• Title/Summary/Keyword: map-matching algorithm

Search Result 233, Processing Time 0.025 seconds

SuperDepthTransfer: Depth Extraction from Image Using Instance-Based Learning with Superpixels

  • Zhu, Yuesheng;Jiang, Yifeng;Huang, Zhuandi;Luo, Guibo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4968-4986
    • /
    • 2017
  • In this paper, we primarily address the difficulty of automatic generation of a plausible depth map from a single image in an unstructured environment. The aim is to extrapolate a depth map with a more correct, rich, and distinct depth order, which is both quantitatively accurate as well as visually pleasing. Our technique, which is fundamentally based on a preexisting DepthTransfer algorithm, transfers depth information at the level of superpixels. This occurs within a framework that replaces a pixel basis with one of instance-based learning. A vital superpixels feature enhancing matching precision is posterior incorporation of predictive semantic labels into the depth extraction procedure. Finally, a modified Cross Bilateral Filter is leveraged to augment the final depth field. For training and evaluation, experiments were conducted using the Make3D Range Image Dataset and vividly demonstrate that this depth estimation method outperforms state-of-the-art methods for the correlation coefficient metric, mean log10 error and root mean squared error, and achieves comparable performance for the average relative error metric in both efficacy and computational efficiency. This approach can be utilized to automatically convert 2D images into stereo for 3D visualization, producing anaglyph images that are visually superior in realism and simultaneously more immersive.

Updating Obstacle Information Using Object Detection in Street-View Images (스트리트뷰 영상의 객체탐지를 활용한 보행 장애물 정보 갱신)

  • Park, Seula;Song, Ahram
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.599-607
    • /
    • 2021
  • Street-view images, which are omnidirectional scenes centered on a specific location on the road, can provide various obstacle information for the pedestrians. Pedestrian network data for the navigation services should reflect the up-to-date obstacle information to ensure the mobility of pedestrians, including people with disabilities. In this study, the object detection model was trained for the bollard as a major obstacle in Seoul using street-view images and a deep learning algorithm. Also, a process for updating information about the presence and number of bollards as obstacle properties for the crosswalk node through spatial matching between the detected bollards and the pedestrian nodes was proposed. The missing crosswalk information can also be updated concurrently by the proposed process. The proposed approach is appropriate for crowdsourcing data as the model trained using the street-view images can be applied to photos taken with a smartphone while walking. Through additional training with various obstacles captured in the street-view images, it is expected to enable efficient information update about obstacles on the road.

Efficient Object-based Image Retrieval Method using Color Features from Salient Regions

  • An, Jaehyun;Lee, Sang Hwa;Cho, Nam Ik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.4
    • /
    • pp.229-236
    • /
    • 2017
  • This paper presents an efficient object-based color image-retrieval algorithm that is suitable for the classification and retrieval of images from small to mid-scale datasets, such as images in PCs, tablets, phones, and cameras. The proposed method first finds salient regions by using regional feature vectors, and also finds several dominant colors in each region. Then, each salient region is partitioned into small sub-blocks, which are assigned 1 or 0 with respect to the number of pixels corresponding to a dominant color in the sub-block. This gives a binary map for the dominant color, and this process is repeated for the predefined number of dominant colors. Finally, we have several binary maps, each of which corresponds to a dominant color in a salient region. Hence, the binary maps represent the spatial distribution of the dominant colors in the salient region, and the union (OR operation) of the maps can describe the approximate shapes of salient objects. Also proposed in this paper is a matching method that uses these binary maps and which needs very few computations, because most operations are binary. Experiments on widely used color image databases show that the proposed method performs better than state-of-the-art and previous color-based methods.

Pan-sharpening Effect in Spatial Feature Extraction

  • Han, Dong-Yeob;Lee, Hyo-Seong
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.359-367
    • /
    • 2011
  • A suitable pan-sharpening method has to be chosen with respect to the used spectral characteristic of the multispectral bands and the intended application. The research on pan-sharpening algorithm in improving the accuracy of image classification has been reported. For a classification, preserving the spectral information is important. Other applications such as road detection depend on a sharp and detailed display of the scene. Various criteria applied to scenes with different characteristics should be used to compare the pan-sharpening methods. The pan-sharpening methods in our research comprise rather common techniques like Brovey, IHS(Intensity Hue Saturation) transform, and PCA(Principal Component Analysis), and more complex approaches, including wavelet transformation. The extraction of matching pairs was performed through SIFT descriptor and Canny edge detector. The experiments showed that pan-sharpening techniques for spatial enhancement were effective for extracting point and linear features. As a result of the validation it clearly emphasized that a suitable pan-sharpening method has to be chosen with respect to the used spectral characteristic of the multispectral bands and the intended application. In future it is necessary to design hybrid pan-sharpening for the updating of features and land-use class of a map.

Hybrid Stereo Matching Algorithm for Reliable Disparity Estimation (신뢰도 높은 변이추정을 위한 하이브리드 스테레오 정합 알고리듬)

  • Kim, Deukhyeon;Choi, Jinwook;Oh, Changjae;Sohn, Kwanghoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.83-86
    • /
    • 2012
  • 본 논문에서는 다양한 변이 추정 방식 중 영역기반(Area-based) 알고리듬과 특정기반(Feature-based) 알고리듬을 결합한 하이브리드(Hybrid) 변이추정 알고리듬을 제안한다. 제안하는 알고리듬은 Features from Accelerated Segment Test(FAST) 코너 점 추출기[2]를 이용하여 좌, 우 영상 각각의 특징 점을 추출한 후, 특징 점들의 정보를 이용한 스테레오 정함을 통해 신뢰도 높은 초기 변이지도(Disparity map)를 생생하게 된다. 그러나 생성된 초기 변이지도는 조밀하지 못하므로, 조밀한 변이 지도를 획득하기 위해 특징점이 추출된 영역에 대해서는 추정된 초기 변이 값을 이웃 픽셀과의 색 유사도를 고려하여 전파시키고 특징 점이 추출되지 않은 영역에 대해서는 이진 윈도우(Binary window)를 활용한 영역기반 변이추정 알고리듬[1]을 이용하여 변이 값을 추정한다. 이를 통해, 제안 알고리듬은 특징 기반 알고리듬에서 발생할 수 있는 보간법 문제를 해결함과 동시에 신뢰도가 높은 초기 변이지도를 사용함으로써, 영역 기반 알고리듬의 정합 오차를 줄여 신뢰도 높은 변이지도를 생생할 수 있다. 실험 결과 추정된 초기 변이지도는 ground truth와 비교 시 약 99%이상의 정확도를 보이며, 특징 점이 추출된 영역에서 기존의 영역기반 알고리듬보다 더 정확한 변이 값이 추정되었음을 확인하였다.

  • PDF

Fusion System of Time-of-Flight Sensor and Stereo Cameras Considering Single Photon Avalanche Diode and Convolutional Neural Network (SPAD과 CNN의 특성을 반영한 ToF 센서와 스테레오 카메라 융합 시스템)

  • Kim, Dong Yeop;Lee, Jae Min;Jun, Sewoong
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.4
    • /
    • pp.230-236
    • /
    • 2018
  • 3D depth perception has played an important role in robotics, and many sensory methods have also proposed for it. As a photodetector for 3D sensing, single photon avalanche diode (SPAD) is suggested due to sensitivity and accuracy. We have researched for applying a SPAD chip in our fusion system of time-of-fight (ToF) sensor and stereo camera. Our goal is to upsample of SPAD resolution using RGB stereo camera. Currently, we have 64 x 32 resolution SPAD ToF Sensor, even though there are higher resolution depth sensors such as Kinect V2 and Cube-Eye. This may be a weak point of our system, however we exploit this gap using a transition of idea. A convolution neural network (CNN) is designed to upsample our low resolution depth map using the data of the higher resolution depth as label data. Then, the upsampled depth data using CNN and stereo camera depth data are fused using semi-global matching (SGM) algorithm. We proposed simplified fusion method created for the embedded system.

Intensity and Ambient Enhanced Lidar-Inertial SLAM for Unstructured Construction Environment (비정형의 건설환경 매핑을 위한 레이저 반사광 강도와 주변광을 활용한 향상된 라이다-관성 슬램)

  • Jung, Minwoo;Jung, Sangwoo;Jang, Hyesu;Kim, Ayoung
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.179-188
    • /
    • 2021
  • Construction monitoring is one of the key modules in smart construction. Unlike structured urban environment, construction site mapping is challenging due to the characteristics of an unstructured environment. For example, irregular feature points and matching prohibit creating a map for management. To tackle this issue, we propose a system for data acquisition in unstructured environment and a framework for Intensity and Ambient Enhanced Lidar Inertial Odometry via Smoothing and Mapping, IA-LIO-SAM, that achieves highly accurate robot trajectories and mapping. IA-LIO-SAM utilizes a factor graph same as Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping (LIO-SAM). Enhancing the existing LIO-SAM, IA-LIO-SAM leverages point's intensity and ambient value to remove unnecessary feature points. These additional values also perform as a new factor of the K-Nearest Neighbor algorithm (KNN), allowing accurate comparisons between stored points and scanned points. The performance was verified in three different environments and compared with LIO-SAM.

Quantitative Assessment of 3D Reconstruction Procedure Using Stereo Matching (스테레오 정합을 이용한 3차원 재구성 과정의 정량적 평가)

  • Woo, Dong-Min
    • Journal of IKEEE
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • The quantitative evaluation of DEM(Digital Elevation Map) is very important to the assessment of the effectiveness for the applied 3D image analysis technique. This paper presents a new quantitative evaluation method of 3D reconstruction process by using synthetic images. The proposed method is based on the assumption that a preacquired DEM and ortho-image should be the pseudo ground truth. The proposed evaluation process begins by generating a pair of photo-realistic synthetic images of the terrain from any viewpoint in terms of application of the constructed ray tracing algorithm to the pseudo ground truth. By comparing the DEM obtained by a pair of photo-realistic synthetic images with the assumed pseudo ground truth, we can analyze the quantitative error in DEM and evaluate the effectiveness of the applied 3D analysis method. To verify the effectiveness of the proposed evaluation method, we carry out the quantitative and the qualitative experiments. For the quantitative experiment, we prove the accuracy of the photo-realistic synthetic image. Also, the proposed evaluation method is experimented on the 3D reconstruction with regards to the change of the matching window. Based on the fact that the experimental result agrees with the anticipation, we can qualitatively manifest the effectiveness of the proposed evaluation method.

Generation of Feature Map for Improving Localization of Mobile Robot based on Stereo Camera (스테레오 카메라 기반 모바일 로봇의 위치 추정 향상을 위한 특징맵 생성)

  • Kim, Eun-Kyeong;Kim, Sung-Shin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.1
    • /
    • pp.58-63
    • /
    • 2020
  • This paper proposes the method for improving the localization accuracy of the mobile robot based on the stereo camera. To restore the position information from stereo images obtained by the stereo camera, the corresponding point which corresponds to one pixel on the left image should be found on the right image. For this, there is the general method to search for corresponding point by calculating the similarity of pixel with pixels on the epipolar line. However, there are some disadvantages because all pixels on the epipolar line should be calculated and the similarity is calculated by only pixel value like RGB color space. To make up for this weak point, this paper implements the method to search for the corresponding point simply by calculating the gap of x-coordinate when the feature points, which are extracted by feature extraction and matched by feature matching method, are a pair and located on the same y-coordinate on the left/right image. In addition, the proposed method tries to preserve the number of feature points as much as possible by finding the corresponding points through the conventional algorithm in case of unmatched features. Because the number of the feature points has effect on the accuracy of the localization. The position of the mobile robot is compensated based on 3-D coordinates of the features which are restored by the feature points and corresponding points. As experimental results, by the proposed method, the number of the feature points are increased for compensating the position and the position of the mobile robot can be compensated more than only feature extraction.

Automatic Extraction Method of Control Point Based on Geospatial Web Service (지리공간 웹 서비스 기반의 기준점 자동추출 기법 연구)

  • Lee, Young Rim
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.2
    • /
    • pp.17-24
    • /
    • 2014
  • This paper proposes an automatic extraction method of control point based on Geospatial Web Service. The proposed method consists of 3 steps. 1) The first step is to acquires reference data using the Geospatial Web Service. 2) The second step is to finds candidate control points in reference data and the target image by SURF algorithm. 3) By using RANSAC algorithm, the final step is to filters the correct matching points of candidate control points as final control points. By using the Geospatial Web Service, the proposed method increases operation convenience, and has the more extensible because of following the OGC Standard. The proposed method has been tested for SPOT-1, SPOT-5, IKONOS satellite images and has been used military standard data as reference data. The proposed method yielded a uniform accuracy under RMSE 5 pixel. The experimental results proved the capabilities of continuous improvement in accuracy depending on the resolution of target image, and showed the full potential of the proposed method for military purpose.