• Title/Summary/Keyword: map-matching algorithm

검색결과 233건 처리시간 0.027초

SuperDepthTransfer: Depth Extraction from Image Using Instance-Based Learning with Superpixels

  • Zhu, Yuesheng;Jiang, Yifeng;Huang, Zhuandi;Luo, Guibo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권10호
    • /
    • pp.4968-4986
    • /
    • 2017
  • In this paper, we primarily address the difficulty of automatic generation of a plausible depth map from a single image in an unstructured environment. The aim is to extrapolate a depth map with a more correct, rich, and distinct depth order, which is both quantitatively accurate as well as visually pleasing. Our technique, which is fundamentally based on a preexisting DepthTransfer algorithm, transfers depth information at the level of superpixels. This occurs within a framework that replaces a pixel basis with one of instance-based learning. A vital superpixels feature enhancing matching precision is posterior incorporation of predictive semantic labels into the depth extraction procedure. Finally, a modified Cross Bilateral Filter is leveraged to augment the final depth field. For training and evaluation, experiments were conducted using the Make3D Range Image Dataset and vividly demonstrate that this depth estimation method outperforms state-of-the-art methods for the correlation coefficient metric, mean log10 error and root mean squared error, and achieves comparable performance for the average relative error metric in both efficacy and computational efficiency. This approach can be utilized to automatically convert 2D images into stereo for 3D visualization, producing anaglyph images that are visually superior in realism and simultaneously more immersive.

스트리트뷰 영상의 객체탐지를 활용한 보행 장애물 정보 갱신 (Updating Obstacle Information Using Object Detection in Street-View Images)

  • 박슬아;송아람
    • 한국측량학회지
    • /
    • 제39권6호
    • /
    • pp.599-607
    • /
    • 2021
  • 스트리트뷰(Street-view) 영상은 도로의 특정 위치를 중심으로 한 전방위 영상을 제공하며, 보행 환경에 대한 다양한 장애물 정보를 포함한다. 보행자용 길안내 서비스에 활용하기 위한 보행 네트워크(Pedestrian network) 데이터는 교통약자를 비롯한 보행자의 이동 편의성을 보장하기 위하여 보행 장애물에 대한 최신 정보를 반영해야 한다. 본 연구에서는 스트리트뷰 영상과 딥러닝 기반의 객체탐지 알고리즘을 활용하여 서울 전역에 위치한 주요 보행 장애물인 볼라드(Bollard)를 학습하였다. 또한, 탐지된 볼라드 정보와 보행 네트워크 간의 공간매칭을 통해 횡단보도 노드를 대상으로 볼라드의 유무와 개수 정보를 장애물 속성으로 입력하고, 동시에 누락된 횡단보도 정보를 갱신하기 위한 프로세스를 정의하였다. 스트리트뷰 영상으로 학습된 모델은 보행 상황에서 스마트폰으로 촬영한 사진에 대해서도 적용이 가능하며, 향후 스트리트뷰 영상에 포함된 다양한 보행 장애물에 대한 추가 학습을 통해 효율적인 보행 장애 정보 갱신이 가능할 것으로 기대된다.

Efficient Object-based Image Retrieval Method using Color Features from Salient Regions

  • An, Jaehyun;Lee, Sang Hwa;Cho, Nam Ik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제6권4호
    • /
    • pp.229-236
    • /
    • 2017
  • This paper presents an efficient object-based color image-retrieval algorithm that is suitable for the classification and retrieval of images from small to mid-scale datasets, such as images in PCs, tablets, phones, and cameras. The proposed method first finds salient regions by using regional feature vectors, and also finds several dominant colors in each region. Then, each salient region is partitioned into small sub-blocks, which are assigned 1 or 0 with respect to the number of pixels corresponding to a dominant color in the sub-block. This gives a binary map for the dominant color, and this process is repeated for the predefined number of dominant colors. Finally, we have several binary maps, each of which corresponds to a dominant color in a salient region. Hence, the binary maps represent the spatial distribution of the dominant colors in the salient region, and the union (OR operation) of the maps can describe the approximate shapes of salient objects. Also proposed in this paper is a matching method that uses these binary maps and which needs very few computations, because most operations are binary. Experiments on widely used color image databases show that the proposed method performs better than state-of-the-art and previous color-based methods.

Pan-sharpening Effect in Spatial Feature Extraction

  • Han, Dong-Yeob;Lee, Hyo-Seong
    • 대한원격탐사학회지
    • /
    • 제27권3호
    • /
    • pp.359-367
    • /
    • 2011
  • A suitable pan-sharpening method has to be chosen with respect to the used spectral characteristic of the multispectral bands and the intended application. The research on pan-sharpening algorithm in improving the accuracy of image classification has been reported. For a classification, preserving the spectral information is important. Other applications such as road detection depend on a sharp and detailed display of the scene. Various criteria applied to scenes with different characteristics should be used to compare the pan-sharpening methods. The pan-sharpening methods in our research comprise rather common techniques like Brovey, IHS(Intensity Hue Saturation) transform, and PCA(Principal Component Analysis), and more complex approaches, including wavelet transformation. The extraction of matching pairs was performed through SIFT descriptor and Canny edge detector. The experiments showed that pan-sharpening techniques for spatial enhancement were effective for extracting point and linear features. As a result of the validation it clearly emphasized that a suitable pan-sharpening method has to be chosen with respect to the used spectral characteristic of the multispectral bands and the intended application. In future it is necessary to design hybrid pan-sharpening for the updating of features and land-use class of a map.

신뢰도 높은 변이추정을 위한 하이브리드 스테레오 정합 알고리듬 (Hybrid Stereo Matching Algorithm for Reliable Disparity Estimation)

  • 김득현;최진욱;오창재;손광훈
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2012년도 하계학술대회
    • /
    • pp.83-86
    • /
    • 2012
  • 본 논문에서는 다양한 변이 추정 방식 중 영역기반(Area-based) 알고리듬과 특정기반(Feature-based) 알고리듬을 결합한 하이브리드(Hybrid) 변이추정 알고리듬을 제안한다. 제안하는 알고리듬은 Features from Accelerated Segment Test(FAST) 코너 점 추출기[2]를 이용하여 좌, 우 영상 각각의 특징 점을 추출한 후, 특징 점들의 정보를 이용한 스테레오 정함을 통해 신뢰도 높은 초기 변이지도(Disparity map)를 생생하게 된다. 그러나 생성된 초기 변이지도는 조밀하지 못하므로, 조밀한 변이 지도를 획득하기 위해 특징점이 추출된 영역에 대해서는 추정된 초기 변이 값을 이웃 픽셀과의 색 유사도를 고려하여 전파시키고 특징 점이 추출되지 않은 영역에 대해서는 이진 윈도우(Binary window)를 활용한 영역기반 변이추정 알고리듬[1]을 이용하여 변이 값을 추정한다. 이를 통해, 제안 알고리듬은 특징 기반 알고리듬에서 발생할 수 있는 보간법 문제를 해결함과 동시에 신뢰도가 높은 초기 변이지도를 사용함으로써, 영역 기반 알고리듬의 정합 오차를 줄여 신뢰도 높은 변이지도를 생생할 수 있다. 실험 결과 추정된 초기 변이지도는 ground truth와 비교 시 약 99%이상의 정확도를 보이며, 특징 점이 추출된 영역에서 기존의 영역기반 알고리듬보다 더 정확한 변이 값이 추정되었음을 확인하였다.

  • PDF

SPAD과 CNN의 특성을 반영한 ToF 센서와 스테레오 카메라 융합 시스템 (Fusion System of Time-of-Flight Sensor and Stereo Cameras Considering Single Photon Avalanche Diode and Convolutional Neural Network)

  • 김동엽;이재민;전세웅
    • 로봇학회논문지
    • /
    • 제13권4호
    • /
    • pp.230-236
    • /
    • 2018
  • 3D depth perception has played an important role in robotics, and many sensory methods have also proposed for it. As a photodetector for 3D sensing, single photon avalanche diode (SPAD) is suggested due to sensitivity and accuracy. We have researched for applying a SPAD chip in our fusion system of time-of-fight (ToF) sensor and stereo camera. Our goal is to upsample of SPAD resolution using RGB stereo camera. Currently, we have 64 x 32 resolution SPAD ToF Sensor, even though there are higher resolution depth sensors such as Kinect V2 and Cube-Eye. This may be a weak point of our system, however we exploit this gap using a transition of idea. A convolution neural network (CNN) is designed to upsample our low resolution depth map using the data of the higher resolution depth as label data. Then, the upsampled depth data using CNN and stereo camera depth data are fused using semi-global matching (SGM) algorithm. We proposed simplified fusion method created for the embedded system.

비정형의 건설환경 매핑을 위한 레이저 반사광 강도와 주변광을 활용한 향상된 라이다-관성 슬램 (Intensity and Ambient Enhanced Lidar-Inertial SLAM for Unstructured Construction Environment)

  • 정민우;정상우;장혜수;김아영
    • 로봇학회논문지
    • /
    • 제16권3호
    • /
    • pp.179-188
    • /
    • 2021
  • Construction monitoring is one of the key modules in smart construction. Unlike structured urban environment, construction site mapping is challenging due to the characteristics of an unstructured environment. For example, irregular feature points and matching prohibit creating a map for management. To tackle this issue, we propose a system for data acquisition in unstructured environment and a framework for Intensity and Ambient Enhanced Lidar Inertial Odometry via Smoothing and Mapping, IA-LIO-SAM, that achieves highly accurate robot trajectories and mapping. IA-LIO-SAM utilizes a factor graph same as Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping (LIO-SAM). Enhancing the existing LIO-SAM, IA-LIO-SAM leverages point's intensity and ambient value to remove unnecessary feature points. These additional values also perform as a new factor of the K-Nearest Neighbor algorithm (KNN), allowing accurate comparisons between stored points and scanned points. The performance was verified in three different environments and compared with LIO-SAM.

스테레오 정합을 이용한 3차원 재구성 과정의 정량적 평가 (Quantitative Assessment of 3D Reconstruction Procedure Using Stereo Matching)

  • 우동민
    • 전기전자학회논문지
    • /
    • 제17권1호
    • /
    • pp.1-9
    • /
    • 2013
  • 3차원 영상 해석 기법에 의해 구해진 DEM(Digital Elevation Map)을 정량적으로 평가하는 것은 영상 해석 기법의 유효성을 검증하기 위해 매우 중요하다. 본 논문에서는 모의 영상 제작에 의한 3차원 재구성 과정의 새로운 정량적 평가 방법을 제안하였다. 제안된 방법은 미리 확보된 DEM과 정사영상(ortho-image)을 가상의 실제 값(pseudo ground truth)으로 가정한 것에 의한 것이다. 제안된 방법의 과정은 그래픽스에서 사용되는 ray tracing 알고리즘을 구성하여 가상의 실제 값에 적용함으로서 원하는 시점으로부터의 한 쌍의 모의 영상을 제작하는 것으로부터 시작된다. 제작된 모의 영상 쌍으로부터 구해진 DEM을 가상의 실제 값과 비교하면 구해진 DEM의 정량적인 오차 분석이 가능하여, 적용된 3차원 영상 해석 기법의 유효성이 평가될 수 있다. 제안된 평가 방법의 타당성을 검증하기 위해, 정량적 및 정성적인 실험이 수행되었다. 이를 위해 발생되는 모의 영상이 실제 형상을 재현하는 정도를 정량적인 수치로서 구하여 제안된 방법을 타당성을 입증하였다. 또한 정합창의 크기 변화에 따른 DEM의 정확도를 제안된 평가 방법에 의해 실험하였다. 이러한 실험 결과가 예견된 결과와 일치함에 의해 제안된 평가 방법의 타당성을 정성적으로도 명백히 증명하였다.

스테레오 카메라 기반 모바일 로봇의 위치 추정 향상을 위한 특징맵 생성 (Generation of Feature Map for Improving Localization of Mobile Robot based on Stereo Camera)

  • 김은경;김성신
    • 한국정보전자통신기술학회논문지
    • /
    • 제13권1호
    • /
    • pp.58-63
    • /
    • 2020
  • 본 논문은 스테레오 카메라를 이용한 모바일 로봇의 위치 추정 정확도 향상을 위한 방법을 제안한다. 스테레오 카메라로 획득한 스테레오 이미지로부터 위치 정보를 복원하기 위해서는 왼쪽 영상의 각 픽셀에 대응하는 대응점을 오른쪽 영상에서 찾아야 한다. 일반적으로 에피폴라 라인 위의 점들과 픽셀 유사도를 연산하여 대응점을 찾는 방법이 있다. 하지만 모든 에피폴라 라인 위의 점들을 다 탐색해야한다는 단점이 있고, 픽셀 값에 의해서만 유사도가 계산된다는 단점이 있다. 이를 보완하기 위해 본 논문에서는 좌/우 영상의 특징점을 추출 및 매칭하여 대응하는 점들이 같은 y축 상에 있을 경우, x좌표 값의 차를 구함으로 대응점 탐색방법을 간략하게 구현하였다. 또한 매칭이 되지 않아 소실되는 점들의 정보는 기존 알고리즘을 통해 대응점을 구함으로 특징점 수를 최대한 보존하고자 하였다. 특징점 및 대응점의 좌표를 통해 복원된 특징점의 3D 좌표를 기반으로 모바일 로봇의 위치를 보정하였다. 실험 결과, 제안하는 방법을 통해 좌표 보정을 위한 특징점 수를 증가시켰고, 특징점 추출만 수행한 경우보다 모바일 로봇의 위치도 보정 가능함을 확인하였다.

지리공간 웹 서비스 기반의 기준점 자동추출 기법 연구 (Automatic Extraction Method of Control Point Based on Geospatial Web Service)

  • 이영림
    • 대한공간정보학회지
    • /
    • 제22권2호
    • /
    • pp.17-24
    • /
    • 2014
  • 본 논문에서는 지리공간 웹 서비스 기반의 기준점 자동 추출 기법을 제안한다. 제안하는 기법은 3단계로 구성된다. 1) 첫 번째 단계에서는 지리공간 웹 서비스를 통해 대상영상의 촬영지역에 해당하는 기준자료를 자동으로 획득하고, 2) 두 번째 단계에서는 획득된 기준자료와 대상영상에 SURF 알고리즘을 적용하여 후보 기준점을 찾는다. 3) 마지막 단계에서는 RANSAC 알고리즘을 이용하여 추출된 후보 기준점 중 정 정합점을 최종 기준점으로 산출한다. 제안하는 기법은 기준자료를 획득하기 위해 지리공간 웹 서비스를 활용하였다. 이를 통하여 제안하는 기법은 기준영상과 고도자료의 관리 및 획득 시 사용자 편의성을 증대 시켰고, 표준을 따르기 때문에 높은 확장성을 가진다. 본 논문에서는 제안하는 기법을 SPOT-1, SPOT-5, IKONOS 위성영상에 적용하여 실험을 수행하였다. 실험지역에 적용한 결과, 제안하는 기법은 대상영상의 촬영센서, 촬영일자, 해상도 변화에도 RMSE 5화소 미만의 일관된 정확도를 산출하였고, 대상영상의 해상도가 좋아짐에 따라 정확도의 지속적인 향상 가능성을 확인하였다. 또한 기준영상과 고도자료로 군 표준 자료를 사용함으로써 제안하는 기법의 군사적 활용가능성을 확인하였다.