• 제목/요약/키워드: manufacturing-based companies

검색결과 597건 처리시간 0.025초

웹검색 트래픽 정보를 활용한 지능형 브랜드 포지셔닝 시스템 : 태블릿 PC 사례를 중심으로 (Intelligent Brand Positioning Visualization System Based on Web Search Traffic Information : Focusing on Tablet PC)

  • 전승표;박도형
    • 지능정보연구
    • /
    • 제19권3호
    • /
    • pp.93-111
    • /
    • 2013
  • 최근 독감 예측이나 부동산가격 예측 등 다양한 분야에서 웹검색 트래픽이나 소셜 네트워크 등의 방대한 고객 데이터를 통해 사회 현상, 소비 트렌드 등을 분석하고자 하는 시도가 증가하고 있다. 최근 구글이나 네이버 등의 인터넷 포털서비스 업체들은 온라인 사용자들의 웹검색 트래픽 정보를 구글 트렌드, 네이버 트렌드 등의 서비스로 공개하고 있는데, 이들이 제공하는 웹검색 트래픽 정보를 기반으로 온라인 사용자들의 정보 검색 행태에 대한 연구들이 학계 업계 등에서 주목받고 있다. 웹검색 정보를 기반으로 사회 현상이나, 소비 동향, 정치 투표 결과 등을 예측해 볼 수 있음을 실증하고 있는 분야는 많은 연구가 수행되고 있지만, 웹검색 트래픽 정보를 이용하여, 소비자의 제품에 대한 중요한 속성 도출 및 소비자의 기대 변화 관측 등의 온라인 사용자 행태에 초점을 맞추어 연구되고 있는 분야는 상대적으로 많은 연구가 수행되고 있지는 않다. 따라서, 본 연구에서는 구글이나 네이버가 제공하는 소비자의 웹검색 트래픽을 활용해서 소비자가 생각하는 제품 포지션을 가시화할 수 있는 방법을 제안한다. 브랜드 간의 관계를 확인하기 위해, 동시 검색 트래픽 정보를 활용하여 네트워크 모델링의 방법을 사용한 시스템을 제안하고 있으며, 이를 통해 소비자들이 제품 간의 유사성을 어떻게 인지하고 형성하며, 새로운 혁신 제품 카테고리 내에서 제품 브랜드들이 소비자의 마음 속에서 어떻게 자리 잡고 있는지의 브랜드 포지셔닝을 확인할 수 있는 방법론을 제안하였다. 또한 이를 태블릿 PC의 사례를 통해서, 미시적인 관점에서 소비자의 마음속에 위치한 태블릿 PC 개별 브랜드들의 위치 및 관계를 보여주었다. 기업은 소비자의 제품에 대한 인식 및 중요 속성 도출을 위해 많은 비용과 시간을 소요하여 소비자 조사를 행하게 되는데, 본 연구의 방법론을 활용하여 소비자의 제품에 대한 인식, 제품간 유사도, 제품에 대한 중요 속성의 변화 등을 일반에게 공개된 검색 트래픽 정보를 활용하여 비교적 쉽고 추가적인 비용 없이 도출할 수 있을 것이다.

다중 클래스 데이터셋의 메타특징이 판별 알고리즘의 성능에 미치는 영향 연구 (The Effect of Meta-Features of Multiclass Datasets on the Performance of Classification Algorithms)

  • 김정훈;김민용;권오병
    • 지능정보연구
    • /
    • 제26권1호
    • /
    • pp.23-45
    • /
    • 2020
  • 기업의 경쟁력 확보를 위해 판별 알고리즘을 활용한 의사결정 역량제고가 필요하다. 하지만 대부분 특정 문제영역에는 적합한 판별 알고리즘이 어떤 것인지에 대한 지식은 많지 않아 대부분 시행착오 형식으로 최적 알고리즘을 탐색한다. 즉, 데이터셋의 특성에 따라 어떠한 분류알고리즘을 채택하는 것이 적합한지를 판단하는 것은 전문성과 노력이 소요되는 과업이었다. 이는 메타특징(Meta-Feature)으로 불리는 데이터셋의 특성과 판별 알고리즘 성능과의 연관성에 대한 연구가 아직 충분히 이루어지지 않았기 때문이며, 더구나 다중 클래스(Multi-Class)의 특성을 반영하는 메타특징에 대한 연구 또한 거의 이루어진 바 없다. 이에 본 연구의 목적은 다중 클래스 데이터셋의 메타특징이 판별 알고리즘의 성능에 유의한 영향을 미치는지에 대한 실증 분석을 하는 것이다. 이를 위해 본 연구에서는 다중 클래스 데이터셋의 메타특징을 데이터셋의 구조와 데이터셋의 복잡도라는 두 요인으로 분류하고, 그 안에서 총 7가지 대표 메타특징을 선택하였다. 또한, 본 연구에서는 기존 연구에서 사용하던 IR(Imbalanced Ratio) 대신 시장집중도 측정 지표인 허핀달-허쉬만 지수(Herfindahl-Hirschman Index, HHI)를 메타특징에 포함하였으며, 역ReLU 실루엣 점수(Reverse ReLU Silhouette Score)도 새롭게 제안하였다. UCI Machine Learning Repository에서 제공하는 복수의 벤치마크 데이터셋으로 다양한 변환 데이터셋을 생성한 후에 대표적인 여러 판별 알고리즘에 적용하여 성능 비교 및 가설 검증을 수행하였다. 그 결과 대부분의 메타특징과 판별 성능 사이의 유의한 관련성이 확인되었으며, 일부 예외적인 부분에 대한 고찰을 하였다. 본 연구의 실험 결과는 향후 메타특징에 따른 분류알고리즘 추천 시스템에 활용할 것이다.

산업화시대 한국 하청애니메이션에 대한 연구 - 1970-80년대 애니메이션을 중심으로 - (A Study on Subcontract Animation in Korea during the Industrialization Era - Centered around Animations in 1970-80s -)

  • 김종옥
    • 만화애니메이션 연구
    • /
    • 통권43호
    • /
    • pp.47-75
    • /
    • 2016
  • 본 연구는 1966년 TBC 동화부의 황금박쥐로 시작된 한국 하청애니메이션의 역사를 1980년대 시기까지 분석하여, 한국애니메이션에서 30년 넘게 진행되어 온 하청애니메이션의 역사를 재조명하였다. 이를 위해 하청애니메이션 제작사 제작현황 산업의 규모 등 하청애니메이션 개괄적인 상황을 통해 당시 OEM산업의 실태를 점검하였고, 애니메이션이 하청제작산업으로 고착화된 배경을 시대상황과 연계하여 분석하였다. 또한 이를 기반으로 하청애니메이션산업이 발생시킨 문제점과 한계 그리고 이를 극복하고 창작애니메이션을 활성화하기 위한 새로운 모색에 대한 분석을 통해 애니메이션 역사 연구의 지평을 넓혀보고자 하였다. 1970년대는 중화학공업 육성과 수출주도형 경제성장이 국가적 목표였던 시기였다. 70년대 후반부터 애니메이션도 해외애니메이션 하청 수주를 통해 수출 주력산업으로 주목받았다. 하청 해니메이션 제작의 확대는 당시 대중문화에 대한 국가의 정책과 칼라TV보급, 비디오 제작 시장 활성화 등의 매체 변화로 극장용 애니메이션 관객이 축소된 점에도 영향을 받았으며 경제적 논리로 자체 애니메이션 제작을 기피했던 방송사 등 플랫폼 부재도 그 원인이었다. 하청애니메이션산업은 애니메이션 인프라의 구축과 신진 인력 양성 등 애니메이션 환경을 확장시켰다는 측면에서 긍정적인 평가를 할 수 있다. 그러나 기술집약적인 '프로덕션' 단계 중심의 발전은 기획력 등 '프리 프로덕션'의 부재와 '포스트 프로덕션(후반작업)'에 대한 인식 부족으로 전문인력 양성에 왜곡된 구조를 만들었고, OEM산업으로 축적된 자본을 창작애니메이션 제작에 재투자하여 내수시장을 형성하지 못한 점은 부정적 측면으로 평가된다. 애니메이션은 한 나라의 문화적, 정신적 산물이다. 따라서 전문인력의 양성과 우수한 작품의 창작, 선순환 구조를 만들 수 있는 시장의 형성 등 창작애니메이션 활성화를 위한 체계적인 지원 정책이 모색되어야 한다. 그러나 애니메이션은 산업이지만 하드웨어 중심의 제조업이 아닌 창의력에 기반한 문화산업이라는 인식은 없었다. 이러한 인식의 부재로 이 시기 한국 애니메이션은 독자적인 작품 제작을 위한 장기적인 계획과 투자를 통해 시장을 만들고, 창작애니메이션을 활성화하는 어떠한 정책 방안도 마련하지 못했다. 이러한 시도는 1990년대 이후 한국도 창작 애니메이션 보호 육성을 위한 다각적인 모색을 통해 새롭게 시작된다.

DECO 필름 제조시 발생하는 PET·OPP 합성 폐필름 재활용의 경제성 분석 연구 (An Economic Analysis Study of Recycling PET·OPP Laminated Film Waste Generated during DECO Film Manufacturing)

  • 박미숙;김다연;양수진;이성유;김춘산;정옥진;황용우
    • 자원리싸이클링
    • /
    • 제32권3호
    • /
    • pp.57-67
    • /
    • 2023
  • 폐플라스틱에 대한 국가 간 수출입 제한에 따라, 폐플라스틱의 국내 처리 및 재활용 방안을 모색할 필요성이 커지고 있다. 본 연구에서는 국내 A 기업의 폐필름 발생 현황 및 운영 정보를 참고하여 가구 표면 마감용 sheet 및 edge 제조시 발생하는 PET·OPP 합성 폐필름의 재활용사업에 대한 비용 편익을 분석하였다. 폐플라스틱 처리는 그간 영세업체에 맡겨져 현황 파악이 어렵고 수익성 담보가 되지 않아, 재활용 기술이 있더라도 활용되기에 어려움이 따랐다. 본 연구에서는 폐플라스틱 물질 재활용 방안의 하나로써, 폐필름 발생 사업장에서 PET·OPP 합성 폐필름을 박리하여 폐PET 재활용이 이루어지는 것으로 가정하되, 재활용 비율은 정부가 「전주기 탈 플라스틱 대책」에서 제시한 수치를 활용하여 2%, 10%, 20%, 30% 재활용할 경우 비용편익을 분석하였다. 본 연구에서는 폐PET 재활용 방안으로 물리적 박리 기술이 도입되는 것으로 가정하여 폐PET 재활용 비율에 따른 비용편익분석을 수행하였다. 그 결과 폐PET의 재활용 비율이 30% 이상일 경우에만, 비용 편익비율(Benefit-cost ration, BCR)이 BCR ≥1 에 해당하여 최소비용 편익비율을 충족하는 것으로 나타났으며 이 때, BCR 값은 1.32였다. 향후 정부의 지원금 할당비율과 단가가 상향될 것으로 예상됨에 따라 비용 편익비율은 더욱 높아질 것으로 사료된다. 해당 사례는 유사 업종의 사업장에 폐PET 재활용 및 수익 창출을 위한 시범 Case가 될 것으로 기대된다.

직원을 위한 내부마케팅이 기업의 시가 총액 변동률에 미치는 영향 분석: 잡플래닛 기업 리뷰를 중심으로 (An Analysis of the Internal Marketing Impact on the Market Capitalization Fluctuation Rate based on the Online Company Reviews from Jobplanet)

  • 최기철;이상용
    • 경영정보학연구
    • /
    • 제20권2호
    • /
    • pp.39-62
    • /
    • 2018
  • 컴퓨터 연산능력의 향상과 데이터를 수집하고 가공해 분석이 가능하도록 데이터를 정형화 시키는 기술이 발달함에 따라, 소셜미디어 및 인터넷 공간에서 생산되는 다양한 텍스트 데이터를 수집하고 그것을 분석하는 시도가 늘고 있다. 본 연구는 이와 같은 기술의 발전과 새롭게 시도되고 있는 분석법을 활용해 텍스트 데이터를 분석하여 과거에 설문조사 방법을 통해 확인했던 "내부마케팅"의 효과를 기존과는 다른 방식으로 확인해 보고자 하였다. 이와 같은 분석을 위해, 전/현직자들이 해당 기업의 구직자들에게 기업의 리뷰를 제공하는 플랫폼 잡플래닛(www.jobplanet.co.kr)의 리뷰 데이터를 웹크롤러를 생성하여 약 4만 건을 수집하였다. 또한 수집된 비정형 데이터를 정형화하기 위한 형태소 분석을 진행하여 명사만을 추출한 후, 미리 생성해 놓은 단어주머니에 들어있는 단어와 같을 경우 그 숫자를 세어 분류화를 진행하였다. 분류화된 내부마케팅 영역별 단어 수의 변화를 독립변수로, 시가총액 변동률을 종속변수로 활용하여, 내부마케팅과 시가총액간의 관계를 확인하고자 하였다. 그 결과, 대부분의 기존 연구와는 다르게 내부마케팅의 효과는 제한적인 영역에서만 기업의 성과에 긍정적인 영향을 미치며 대부분의 환경에서는 음의 영향을 미치는 것으로 나타났다. 산업군으로 나누었을 때, 제조업에서는 여성지원과 교육 훈련 부문에서 기업성과에 긍정의 영향을 미치는 것으로 나타났으나, 유통업에서는 직원 복지, 일-가정 양립 그리고 바이오/제약 업종에서는 직원 복지, 일-가정 양립, 사내 커뮤니케이션 그리고 보상 부문에서 모두 기업성과에 음의 영향을 미치는 것으로 나타났다. 또한 기업의 규모가 크고 역사가 오래된 기업에서는 직원 복지가 기업성과에 악영향을 미치는 것으로 나타났으나, 교육 훈련 부문에서는 종속변수에 긍정적 영향을 미치는 것을 확인할 수 있었으며, 기업의 규모가 작고 역사가 짧은 기업에서는 직원 복지, 사내 커뮤니케이션 그리고 일-가정 양립에서 종속변수와 음의 관계를, 여성지원 에서는 종속변수와 양의 관계를 갖는 것으로 나타났다. 본 연구는 이러한 결과들을 분석하여 이론적 의미뿐만 아니라, 실무적 함의를 제시하고자 하였다.

유전자 알고리즘을 이용한 다분류 SVM의 최적화: 기업신용등급 예측에의 응용 (Optimization of Multiclass Support Vector Machine using Genetic Algorithm: Application to the Prediction of Corporate Credit Rating)

  • 안현철
    • 경영정보학연구
    • /
    • 제16권3호
    • /
    • pp.161-177
    • /
    • 2014
  • 기업신용등급은 금융시장의 신뢰를 구축하고 거래를 활성화하는데 있어 매우 중요한 요소로서, 오래 전부터 학계에서는 보다 정확한 기업신용등급 예측을 가능케 하는 다양한 모형들을 연구해 왔다. 구체적으로 다중판별분석(Multiple Discriminant Analysis, MDA)이나 다항 로지스틱 회귀분석(multinomial logistic regression analysis, MLOGIT)과 같은 통계기법을 비롯해, 인공신경망(Artificial Neural Networks, ANN), 사례기반추론(Case-based Reasoning, CBR), 그리고 다분류 문제해결을 위해 확장된 다분류 Support Vector Machines(Multiclass SVM)에 이르기까지 다양한 기법들이 학자들에 의해 적용되었는데, 최근의 연구결과들에 따르면 이 중에서도 다분류 SVM이 가장 우수한 예측성과를 보이고 있는 것으로 보고되고 있다. 본 연구에서는 이러한 다분류 SVM의 성능을 한 단계 더 개선하기 위한 대안으로 유전자 알고리즘(GA, Genetic Algorithm)을 활용한 최적화 모형을 제안한다. 구체적으로 본 연구의 제안모형은 유전자 알고리즘을 활용해 다분류 SVM에 적용되어야 할 최적의 커널 함수 파라미터값들과 최적의 입력변수 집합(feature subset)을 탐색하도록 설계되었다. 실제 데이터셋을 활용해 제안모형을 적용해 본 결과, MDA나 MLOGIT, CBR, ANN과 같은 기존 인공지능/데이터마이닝 기법들은 물론 지금까지 가장 우수한 예측성과를 보이는 것으로 알려져 있던 전통적인 다분류 SVM 보다도 제안모형이 더 우수한 예측성과를 보임을 확인할 수 있었다.

텍스트 마이닝 기법을 활용한 인공지능 기술개발 동향 분석 연구: 깃허브 상의 오픈 소스 소프트웨어 프로젝트를 대상으로 (A Study on the Development Trend of Artificial Intelligence Using Text Mining Technique: Focused on Open Source Software Projects on Github)

  • 정지선;김동성;이홍주;김종우
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.1-19
    • /
    • 2019
  • 제4차 산업혁명을 이끄는 주요 원동력 중 하나인 인공지능 기술은 이미지와 음성 인식 등 여러 분야에서 사람과 유사하거나 더 뛰어난 능력을 보이며, 사회 전반에 미치게 될 다양한 영향력으로 인하여 높은 주목을 받고 있다. 특히, 인공지능 기술은 의료, 금융, 제조, 서비스, 교육 등 광범위한 분야에서 활용이 가능하기 때문에, 현재의 기술 동향을 파악하고 발전 방향을 분석하기 위한 노력들 또한 활발히 이루어지고 있다. 한편, 이러한 인공지능 기술의 급속한 발전 배경에는 학습, 추론, 인식 등의 복잡한 인공지능 알고리즘을 개발할 수 있는 주요 플랫폼들이 오픈 소스로 공개되면서, 이를 활용한 기술과 서비스들의 개발이 비약적으로 증가하고 있는 것이 주요 요인 중 하나로 확인된다. 또한, 주요 글로벌 기업들이 개발한 자연어 인식, 음성 인식, 이미지 인식 기능 등의 인공지능 소프트웨어들이 오픈 소스 소프트웨어(OSS: Open Sources Software)로 무료로 공개되면서 기술확산에 크게 기여하고 있다. 이에 따라, 본 연구에서는 온라인상에서 다수의 협업을 통하여 개발이 이루어지고 있는 인공지능과 관련된 주요 오픈 소스 소프트웨어 프로젝트들을 분석하여, 인공지능 기술 개발 현황에 대한 보다 실질적인 동향을 파악하고자 한다. 이를 위하여 깃허브(Github) 상에서 2000년부터 2018년 7월까지 생성된 인공지능과 관련된 주요 프로젝트들의 목록을 검색 및 수집하였으며, 수집 된 프로젝트들의 특징과 기술 분야를 의미하는 토픽 정보들을 대상으로 텍스트 마이닝 기법을 적용하여 주요 기술들의 개발 동향을 연도별로 상세하게 확인하였다. 분석 결과, 인공지능과 관련된 오픈 소스 소프트웨어들은 2016년을 기준으로 급격하게 증가하는 추세이며, 토픽들의 관계 분석을 통하여 주요 기술 동향이 '알고리즘', '프로그래밍 언어', '응용분야', '개발 도구'의 범주로 구분하는 것이 가능함을 확인하였다. 이러한 분석 결과를 바탕으로, 향후 다양한 분야에서의 활용을 위해 개발되고 있는 인공지능 관련 기술들을 보다 상세하게 구분하여 확인하는 것이 가능할 것이며, 효과적인 발전 방향 모색과 변화 추이 분석에 활용이 가능할 것이다.