• Title/Summary/Keyword: manufacturing technology

Search Result 11,352, Processing Time 0.045 seconds

The Impact of Innovative Efficiency on Performance of Firms (혁신효율성이 기업의 수익성에 미치는 영향)

  • Han, Ji-yeon;Ha, Seok-tae;Cho, Seong-pyo
    • Journal of Technology Innovation
    • /
    • v.28 no.3
    • /
    • pp.1-28
    • /
    • 2020
  • This study examines whether the firm with high innovation efficiency realizes high operating performance. We measured innovation efficiency by the ratio of patent applications for R&D expenditure or R&D stock and measured operating performance by the ratio of operating income or operating cash flow to total assets for the following year. The sample consists of 1,880 manufacturing firm-years, which listed on the Korean Exchange between 2014 and 2017. We analyze the effect of innovation efficiency on operating performance using a model of Hirshleifer et al. (2013) results show that both innovation efficiency variables have a significantly positive relationship with the total asset operating margin. Besides, the following year's performance, measured by the total asset operating cash flow ratio, also shows a positive relationship with the two innovation efficiency variables at the 5% and 1% significance levels, respectively. The results indicate that high innovation efficiency firms that link the outcomes of R&D to more patent applications realize higher operating performance. Also, we divided the R&D-intensive and non-R&D-intensive industries and performed the same analysis. As a result, the innovation efficiency has a significant positive effect on operating margin in both industries. However, the effect of innovation efficiency on the operating cash flow is only significant in R&D-intensive industries. This study suggests that the effects of innovation efficiency are more consistent in the R&D-intensive industry. Additionally, we divided the high patent application and low patent applications industries and performed the same analysis. As a result, the innovation efficiency has a significant positive effect on operating margin in both industries. This study suggests that the effects of innovation efficiency are more consistent in the high patent application industry. We show that a firm's innovation efficiency is a critical factor for a firm's performance, while prior studies on the R&D performance have not considered the innovation efficiency of each firm. The evidence suggests that firms not only consider R&D expenditures but also improve the performance of companies by increasing innovation efficiency. Investors need to consider their innovation efficiency when evaluating the value of firms.

A Machine Learning-based Total Production Time Prediction Method for Customized-Manufacturing Companies (주문생산 기업을 위한 기계학습 기반 총생산시간 예측 기법)

  • Park, Do-Myung;Choi, HyungRim;Park, Byung-Kwon
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.177-190
    • /
    • 2021
  • Due to the development of the fourth industrial revolution technology, efforts are being made to improve areas that humans cannot handle by utilizing artificial intelligence techniques such as machine learning. Although on-demand production companies also want to reduce corporate risks such as delays in delivery by predicting total production time for orders, they are having difficulty predicting this because the total production time is all different for each order. The Theory of Constraints (TOC) theory was developed to find the least efficient areas to increase order throughput and reduce order total cost, but failed to provide a forecast of total production time. Order production varies from order to order due to various customer needs, so the total production time of individual orders can be measured postmortem, but it is difficult to predict in advance. The total measured production time of existing orders is also different, which has limitations that cannot be used as standard time. As a result, experienced managers rely on persimmons rather than on the use of the system, while inexperienced managers use simple management indicators (e.g., 60 days total production time for raw materials, 90 days total production time for steel plates, etc.). Too fast work instructions based on imperfections or indicators cause congestion, which leads to productivity degradation, and too late leads to increased production costs or failure to meet delivery dates due to emergency processing. Failure to meet the deadline will result in compensation for delayed compensation or adversely affect business and collection sectors. In this study, to address these problems, an entity that operates an order production system seeks to find a machine learning model that estimates the total production time of new orders. It uses orders, production, and process performance for materials used for machine learning. We compared and analyzed OLS, GLM Gamma, Extra Trees, and Random Forest algorithms as the best algorithms for estimating total production time and present the results.

Comparison between Different Industrial GDPs to Understand the Importance of the Industry: Focusing on the Food, Medical & Drug Industry (산업별 GDP 중요도 비교 분석: 식의약 산업 부문 GDP를 중심으로)

  • Kim, Sohye;Kim, Jinmin;Kim, Jaeyoung;Kang, Byung-Goo
    • Knowledge Management Research
    • /
    • v.22 no.4
    • /
    • pp.103-118
    • /
    • 2021
  • Gross Domestic Product(GDP) is affected by the economic power of each industry. Therefore, using statistical data related to the food and drug industry, we tried to determine the proportion of GDP and analyzed the impact of the food, medical & drug industry on the domestic economy through comparison with other industries. The food, medical & drug industry has a wide range of industries among domestic industries and is closely related to the lives of the people. In addition, human lifespan is increasing, and recently, due to the spread of an infectious disease called COVID-19, the bio sector belonging to the food, medical & drug industry is in the spotlight. Attention is needed to the industry as the competitiveness of the food, medical & drug industry is expected to increase. The Ministry of Food and Drug Safety provides statistics on the food, medical & drug industry, but does not provide a systematic share of GDP. Since it is difficult to determine how influential the industry is compared to other industries, this study attempts to obtain the share of GDP in the food, medical & drug industry and compare it with other industries. In the process of obtaining GDP in the food, medical & drug industry sector, there was a difficulty in that the figures in statistical data were not unified by time point. In order to overcome the limitations, statistical data as a standard are determined. The GDP of the Food, Medical & Drug Industry was estimated using total added value, production, sales, and added value by industry. Compared to other industries, the Food, Medical & Drug Industry's GDP ranked second after the GDP of the manufacturing industry. As a result, it suggests that the food, medical & drug industry has a great influence on the national economic power among domestic industries.

Optimization and Application Research on Triboelectric Nanogenerator for Wind Energy Based High Voltage Generation (정전발전 기반 바람에너지 수확장치의 최적화 및 고전압 생성을 위한 활용 방안)

  • Jang, Sunmin;Ra, Yoonsang;Cho, Sumin;Kam, Dongik;Shin, Dongjin;Lee, Heegyu;Choi, Buhee;Lee, Sae Hyuk;Cha, Kyoung Je;Seo, Kyoung Duck;Kim, Hyung Woo;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.243-248
    • /
    • 2022
  • As the scope of use of portable and wearable electronic devices is expanding, the limitations of heavy and bulky solid-state batteries are being revealed. Given that, it is urgent to develop a small energy harvesting device that can partially share the role of a battery and the utilization of energy sources that are thrown away in daily life is becoming more important. Contact electrification, which generates electricity based on the coupling of the triboelectric effect and electrical induction when the two material surfaces are in contact and separated, can effectively harvest the physical and mechanical energy sources existing in the surrounding environment without going through a complicated intermediate process. Recently, the interest in the harvest and utilization of wind energy is growing since the wind is an infinitely ecofriendly energy source among the various environmental energy sources that exist in human surroundings. In this study, the optimization of the energy harvesting device for the effective harvest of wind energy based on the contact electrification was analyzed and then, the utilization strategy to maximize the utilization of the generated electricity was investigated. Natural wind based Fluttering TENG (NF-TENG) using fluttering film was developed, and design optimization was conducted. Moreover, the safe high voltage generation system was developed and a plan for application in the field requiring high voltage was proposed by highlighting the unique characteristics of TENG that generates low current and high voltage. In this respect, the result of this study demonstrates that a portable energy harvesting device based on the contact electrification shows great potential as a strategy to harvest wind energy thrown away in daily life and use it widely in fields requiring high voltage.

A Review on the Recycling of the Concrete Waste Generate from the Decommissioning of Nuclear Power Plants (원전 해체 콘크리트 폐기물의 재활용에 대한 고찰)

  • Jeon, Ji-Hun;Lee, Woo-Chun;Lee, Sang-Woo;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.285-297
    • /
    • 2021
  • Globally, nuclear-decommissioning facilities have been increased in number, and thereby hundreds of thousands of wastes, such as concrete, soil, and metal, have been generated. For this reason, there have been numerous efforts and researches on the development of technology for volume reduction and recycling of solid radioactive wastes, and this study reviewed and examined thoroughly such previous studies. The waste concrete powder is rehydrated by other processes such as grinding and sintering, and the processes rendered aluminate (C3A), C4AF, C3S, and ��-C2S, which are the significant compounds controlling the hydration reaction of concrete and the compressive strength of the solidified matrix. The review of the previous studies confirmed that waste concretes could be used as recycling cement, but there remain problems with the decreasing strength of solidified matrix due to mingling with aggregates. There have been further efforts to improve the performance of recycling concrete via mixing with reactive agents using industrial by-products, such as blast furnace slag and fly ash. As a result, the compressive strength of the solidified matrix was proved to be enhanced. On the contrary, there have been few kinds of researches on manufacturing recycled concretes using soil wastes. Illite and zeolite in soil waste show the high adsorption capacity on radioactive nuclides, and they can be recycled as solidification agents. If the soil wastes are recycled as much as possible, the volume of wastes generated from the decommissioning of nuclear power plants (NPPs) is not only significantly reduced, but collateral benefits also are received because radioactive wastes are safely disposed of by solidification agents made from such soil wastes. Thus, it is required to study the production of non-sintered cement using clay minerals in soil wastes. This paper reviewed related domestic and foreign researches to consider the sustainable recycling of concrete waste from NPPs as recycling cement and utilizing clay minerals in soil waste to produce unsintered cement.

Study on the Manufacture of High-purity Vanadium Pentoxide for VRFB Using Chelating Agents (킬레이트제를 활용한 VRFB용 고순도 오산화바나듐 제조 연구)

  • Kim, Sun Kyung;Kwon, Sukcheol;Kim, Hee Seo;Suh, Yong Jae;Yoo, Jeong Hyun;Chang, Hankwon;Jeon, Ho-SeoK;Park, In-Su
    • Resources Recycling
    • /
    • v.31 no.2
    • /
    • pp.20-32
    • /
    • 2022
  • This study implemented a chelating agent (Ethylenediaminetetraacetic acid, EDTA) in purification to obtain high-purity vanadium pentoxide (V2O5) for use in VRFB (Vanadium Redox Flow Battery). V2O5 (powder) was produced through the precipitation recovery of ammonium metavanadate (NH4VO3) from a vanadium solution, which was prepared using a low-purity vanadium raw material. The initial purity of the powder was estimated to be 99.7%. However, the use of a chelating agent improved its purity up to 99.9% or higher. It was conjectured that the added chelating agent reacted with the impurity ions to form a complex, stabilizing them. This improved the selectivity for vanadium in the recovery process. However, the prepared V2O5 powder exhibited higher contents of K, Mn, Fe, Na, and Al than those in the standard counterparts, thus necessitating additional research on its impurity separation. Furthermore, the vanadium electrolyte was prepared using the high-purity V2O5 powder in a newly developed direct electrolytic process. Its analytical properties were compared with those of commercial electrolytes. Owing to the high concentration of the K, Ca, Na, Al, Mg, and Si impurities in the produced vanadium electrolyte, the purity was analyzed to be 99.97%, lower than those (99.98%) of its commercial counterparts. Thus, further research on optimizing the high-purity V2O5 powder and electrolyte manufacturing processes may yield a process capable of commercialization.

Analysis of Paint Used for a Helicopter Operated in the Korean War through the History of Paint Application (페인트 도장의 역사를 통해 본 6·25전쟁 운용 헬기의 도료분석)

  • Kang Hyunsam;Jang Hanul;Choi Yangho
    • Conservation Science in Museum
    • /
    • v.29
    • /
    • pp.133-152
    • /
    • 2023
  • This study references preceding studies to examine the history of paint application techniques using various paints in the past, with the aim to contribute to the long-term preservation of large military cultural heritage assets situated outdoors. To this end, the study compared the findings of preceding research with the findings of an analysis conducted on a H-13 helicopter housed at the War Memorial of Korea. Upon collecting and analyzing samples from three grounded WWII aircraft from above-ground by preceding studies, it was confirmed from each sample that the various chemical properties of chrome ensured the effectiveness of the protective coating. The compound was first tested as a corrosion-inhibiting pigment in the early 1940s and proved its excellent moisture-resistant properties over the course of 80 years, despite the deterioration of the paint layer and long-term exposure to the natural environment. For this reason, it has been widely used as a corrosion inhibitor for aluminum alloys in the aviation industry. In other word, the most widely-used material for preventing corrosion was an organic primer containing chromate. In this study, based on the paint analysis of a H-13 helicopter operated in the Korean War, it was shown that the second layer, consisting of the primer, contains chromium oxide (Cr2O3). In addition, it was estimated that red lead tetraoxide (Pb3O4) was used for the vehicle. Analysis results and data from previous studies can help to confirm the continued effectiveness of corrosion prevention function provided by chromate. Meanwhile, the result of infrared spectroscopy analysis confirmed the use of alkyd resin. In the future, comparisons with a more diverse range of artifacts will allow the identification of changes in the manufacturing technology of paints used to protect alloys from corrosion.

An Economic Analysis Study of Recycling PET·OPP Laminated Film Waste Generated during DECO Film Manufacturing (DECO 필름 제조시 발생하는 PET·OPP 합성 폐필름 재활용의 경제성 분석 연구)

  • Mi Sook Park;Da Yeon Kim;Soo Jin Yang;Seong You Lee;Chun San Kim;Ok Jin Joung;Yong Woo Hwang
    • Resources Recycling
    • /
    • v.32 no.3
    • /
    • pp.57-67
    • /
    • 2023
  • The treatment of waste plastic has primarily been entrusted to small companies, which has resulted in challenges in obtaining an accurate overview of the current state of affairs and ensuring profitability. Consequently, despite the presence of recycling technology, their practical application has proven to be challenging. In this study, as part of the waste plastic material recycling plan, it is assumed that the PET/OPP laminated waste film is peeled off at the waste film generation site for the second use. The recycling rate of PET/OPP delaminated waste film is assumed to be 2%, 10%, and 30% referring to the figures suggested by "Life-cycle Post Plastic Measures" from the Korean government. In this study, a physical separation method was developed as a recycling approach for waste PET. A result of cost-benefit analysis was conducted to evaluate the economic viability of the recycling process based on changes in the recycling rate. The findings indicated that a recycling rate of waste PET was 30% or higher resulted in a cost-benefit ratio (Benefit-cost ratio, BCR) of 1.32, exceeding the threshold of BCR ≥1, which is considered to meet the minimum requirement for cost-benefit balance. As the government's allocation ratio and unit price are expected to increase in the future, the cost-benefit ratio is expected to increase further. This case is expected to serve as a pilot initiative for waste PET recycling and foster profit creation for businesses in similar industries.

A Study on the Development of Ultra-precision Small Angle Spindle for Curved Processing of Special Shape Pocket in the Fourth Industrial Revolution of Machine Tools (공작기계의 4차 산업혁명에서 특수한 형상 포켓 곡면가공을 위한 초정밀 소형 앵글 스핀들 개발에 관한 연구)

  • Lee Ji Woong
    • Journal of Practical Engineering Education
    • /
    • v.15 no.1
    • /
    • pp.119-126
    • /
    • 2023
  • Today, in order to improve fuel efficiency and dynamic behavior of automobiles, an era of light weight and simplification of automobile parts is being formed. In order to simplify and design and manufacture the shape of the product, various components are integrated. For example, in order to commercialize three products into one product, product processing is occurring to a very narrow area. In the case of existing parts, precision die casting or casting production is used for processing convenience, and the multi-piece method requires a lot of processes and reduces the precision and strength of the parts. It is very advantageous to manufacture integrally to simplify the processing air and secure the strength of the parts, but if a deep and narrow pocket part needs to be processed, it cannot be processed with the equipment's own spindle. To solve a problem, research on cutting processing is being actively conducted, and multi-axis composite processing technology not only solves this problem. It has many advantages, such as being able to cut into composite shapes that have been difficult to flexibly cut through various processes with one machine tool so far. However, the reality is that expensive equipment increases manufacturing costs and lacks engineers who can operate the machine. In the five-axis cutting processing machine, when producing products with deep and narrow sections, the cycle time increases in product production due to the indirectness of tools, and many problems occur in processing. Therefore, dedicated machine tools and multi-axis composite machines should be used. Alternatively, an angle spindle may be used as a special tool capable of multi-axis composite machining of five or more axes in a three-axis machining center. Various and continuous studies are needed in areas such as processing vibration absorption, low heat generation and operational stability, excellent dimensional stability, and strength securing by using the angle spindle.

From a Defecation Alert System to a Smart Bottle: Understanding Lean Startup Methodology from the Case of Startup "L" (배변알리미에서 스마트바틀 출시까지: 스타트업 L사 사례로 본 린 스타트업 실천방안)

  • Sunkyung Park;Ju-Young Park
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.5
    • /
    • pp.91-107
    • /
    • 2023
  • Lean startup is a concept that combines the words "lean," meaning an efficient way of running a business, and "startup," meaning a new business. It is often cited as a strategy for minimizing failure in early-stage businesses, especially in software-based startups. By scrutinizing the case of a startup L, this study suggests that lean startup methodology(LSM) can be useful for hardware and manufacturing companies and identifies ways for early startups to successfully implement LSM. To this end, the study explained the core of LSM including the concepts of hypothesis-driven approach, BML feedback loop, minimum viable product(MVP), and pivot. Five criteria to evaluate the successful implementation of LSM were derived from the core concepts and applied to evaluate the case of startup L . The early startup L pivoted its main business model from defecation alert system for patients with limited mobility to one for infants or toddlers, and finally to a smart bottle for infants. In developing the former two products, analyzed from LSM's perspective, company L neither established a specific customer value proposition for its startup idea and nor verified it through MVP experiment, thus failed to create a BML feedback loop. However, through two rounds of pivots, startup L discovered new target customers and customer needs, and was able to establish a successful business model by repeatedly experimenting with MVPs with minimal effort and time. In other words, Company L's case shows that it is essential to go through the customer-market validation stage at the beginning of the business, and that it should be done through an MVP method that does not waste the startup's time and resources. It also shows that it is necessary to abandon and pivot a product or service that customers do not want, even if it is technically superior and functionally complete. Lastly, the study proves that the lean startup methodology is not limited to the software industry, but can also be applied to technology-based hardware industry. The findings of this study can be used as guidelines and methodologies for early-stage companies to minimize failures and to accelerate the process of establishing a business model, scaling up, and going global.

  • PDF