This study is aimed at development a plan to strengthen the competitiveness in technology of small and medium manufacturing enterprises, which can be assumed mainly by small and medium manufacturing companies, to improve the competitiveness of domestic industry. To remove these obstacles and strengthen the technological competitiveness, internally it is required to change the attitude of management about the development and innovation of technology first. Promotion of favorable atmosphere for the technological development and organized activity to acquire technological information are additional requirements. In conclusion, to survive the competition and to secure national industrial competitiveness, each individual company needs to endeavor for technological innovation and improvement in product quality and productivity.
The procedure of grouping the machines and parts to form cells is called manufacturing cell design. The manufacturing cell design is an important step in the development and implementation of advanced manufacturing systems. For the successful implementation of the manufacturing systems, identification of independent manufacturing cells, i.e., cells where parts are completely processed in the cell and no intercell movements, is necessary in the design phase. In this paper, we developed a mixed integer programming model and genetic algorithm based procedure to solve the independent manufacturing cells design problem considering the alternative process plans and machines duplication. Several manufacturing parameters such as, production volume, machine capacity, processing time, number of cells and cell size, are considered in the process. The model determines the process plan for parts, port families and machine cells simultaneously. The model has been verified with the numerical examples.
Up-to-date manufacturing companies have faced a market-driven environment of pull production order. There should be a difference in operating manufacturing resources according to the type, quantity, and delivery time of manufactured products, because the process situation in pull production is changed by customer orders. And it should be taken into account from the stage of preparing for production such as process design and the placement and utilization of manufacturing resources. However, the feasibility of production plans is limited because most of small manufacturing businesses make production/supply plan of the parts and products assuming that equipment abilities in scheduling is sufficient without managing process standard information systemically. In this study, a discrete event simulation system based on BOM (bill of material), that is F-OPIS (online productivity innovation system), is introduced and a case study on application of the system leading to improving productivities is presented. F-OPIS deals with a decision-problem on production management and it is specialized for small-and- medium sized manufacturing companies. The target company of this case study is a typical small-and-medium sized manufacturing company in Korea, that produces various machined parts. The target company adopts make-to-stock production management to prevent tardy delivery because of fluctuations in demand. Therefore, it is required to apply an efficient inventory control solution for improving productivities. In this paper, based on the constraints of working capacity of manufacturing resources, the bottleneck process is analyzed as production conditions are changed. Consequently, an improvement plan is proposed, that eventually enhances overall utilization rates of resources in the bottleneck process and reduces overall production lead-time and inventory level.
This paper presents a new method for assessing the efficiency of production process plans using tolerance chart to lower production cost. The tolerance chart is used to predict the accuracy of a part that is to be produced following the process plan, and to carry out the quantitative measurement on the efficiency of the process plan. By comparing the values of design tolerances and their corresponding resultant tolerances calculated using the tolerance chart, the process plan that is incapable of satisfying the design requirements and the faulty production operations can be identified. Similarly, the process plan that imposes unnecessarily high accuracy and wasteful production operations can also be identified. For the latter, a quantitative measure on the efficiency of the process plan is introduced. The higher the unnecessary cost of the production, the poor is the efficiency of the process plan. A coefficient is introduced for measuring the process plan efficiency. The coefficient also incorporates two weighting factors to reflect the difficulty of manufacturing operations and number of dimensional tolerances involved. To facilitate the identification of the machining operations and the machined surfaces, which are related to the unnecessarily tight resultant tolerances caused by the process plan, a rooted tree representation of the tolerance chart is introduced, and its use is demonstrated. An example is presented to illustrate the new method. This research introduces a new quantitative process plan evaluation method that may lead to the optimization of process plans.
Real-time monitoring and controlling manufacturing process is important because of the unexpected events. When unexpected event like mechanical trouble occurs, prior plan becomes unacceptable and a new schedule must be generated though manufacturing schedule is already decided for order. Regenerating the whole schedule, however, spends much time and cost. Thus automated system which monitors and controls manufacturing process is required. In this paper, we present a system which uses radio-frequency identification and computer vision system. The system collect real-time information about manufacturing conditions and generates new schedule quickly with those information.
Traditional Manufacturing method is push system by plan made in advance and Japanese manufacturing method represented by JUST-IN-TIME is pull system which respond's to the demand flexibly. Both have their pros and cons. In general, it is well understood that push system is faster than pull system in the sense of manufacturing speed. However, pull system such as JIT excelles dramatically in the sense of work in process. Therefore, this paper is trying to put together to get alternative which has the advantage of both system. The objective of the paper is to enhance the effect of built-in manufacturing system without paying extra cost by way of introducing the alternative of the pull-push manufacturing strategic operational method.
This paper describes an integrated CAD and CAPP system for prismatic parts of injection mold which generates a complete process plan automatically from CAD data of a part without human intervention. This system employs Auto CAD as a CAD model and GS-CAPP as an automatic process planning system for injection mold. The proposed CAD/CAPP system consists of three modules such as CAD data conversion module, manufacturing feature recognition module, and CAD/CAPP interface module. CAD data conversion module transforms design data of AutoCAD into three dimensional part data. Manufacturing feature recognition module extracts specific manufacturing features of a part using feature recognition rule base. Each feature can be recognized by combining geometry, position and size of the feature. CAD/CAPP interface module links manufacturing feature codes and other head data to automatic process planning system. The CAD/CAPP system can improve the efficiency of process planning activities and reduce the time required for process planning. This system can provide a basis for the development of part feature based design by analyzing manufacturing features.
The quality of products produced by injection molding process is greatly influenced by the process variables set on the injection molding machine during manufacturing. It is very difficult to predict the quality of injection molded product considering the stochastic nature of manufacturing process, because the process variables complexly affect the quality of the injection molded product. In the present study we predicted the quality of injection molded product using Artificial Neural Network (ANN) method specifically from Multiple Input Single Output (MISO) and Multiple Input Multiple Output (MIMO) perspectives. In order to train the ANN model a systematic plan was prepared based on a combination of orthogonal sampling and random sampling methods to represent various and robust patterns with small number of experiments. According to the plan the injection molding experiments were conducted to generate data that was separated into training, validation and test data groups to optimize the parameters of the ANN model and evaluate predicting performance of 4 structures (MISO1-2, MIMO1-2). Based on the predicting performance test, it was confirmed that as the number of output variables were decreased, the predicting performance was improved. The results indicated that it is effective to use single output model when we need to predict the quality of injection molded product with high accuracy.
Today's fierce competition and global economic recession make most of manufacturing companies in the world difficult to gain a profit. In order to survive such a environment and increase competitiveness, manufacturing companies have to continuously eliminate their wasteful factors through an efficient process analysis, improve quality of products, increase the flexibility of manufacturing processes. In this paper, we consider a case study for the Shanghai New Auto which is a subcontractor of MOBIS in China, to improve productivity by using therblig method, one of the motion analysis, to minimize the work-in-process inventories and to shorten the manufacturing cycle times. We also try to relocate the facility layout to increase the efficiency and flexibility of manufacturing processes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.