• Title/Summary/Keyword: manufacturing molds

Search Result 192, Processing Time 0.021 seconds

A Study on the Process Optimization of Microcellular Foaming Injection Molded Ceiling Air-Conditioner 4-Way Panel (초미세발포 사출성형을 이용한 천정형 에어컨 4-way 판넬의 공정 최적화에 관한 연구)

  • Kim, Joo-Kwon;Lee, Jung-Hee;Kim, Jong-Sun;Lee, Jun-Han;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.98-104
    • /
    • 2018
  • Deflected 4-way panels of ceiling air conditioners produced by injection molding process have caused dew condensation at the edge of products. In order to prevent this drawback with reducing weight and deformation, this study proposed renovated process adopting microcellular foaming. According to results from 2-sample t-test and analysis of variance(ANOVA), the critical factors affecting weight were melt temperature and injection speed. In addition, the vital effects on deformation were structure at the edge, mold temperature and cooling time. Optimal conditions of these parameters were derived by regressive analysis with CAE and response surface method(RSM), and then applied to an actual design and process stage to analyze performance. As a results, it clearly showed that new process improved process capability as well as reduced both weight and deformation by 18.8% and 71.9% respectively compared to the conventional method.

Evolution of the Hanji-making Technology, from Ancient Times to the Present

  • Oh-Kyu LEE;Seokju KIM;Hyung Won LEE
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.509-525
    • /
    • 2023
  • This study has delved into the evolution of Hanji-manufacturing molds and techniques from ancient times to the present, aiming to uncover the current state of traditional Hanji-making techniques. In the absence of records on Hanji-making, various ancient documents, rare books, and documents during the Japanese occupation period, among other artifacts and relics, were analyzed in this study. It was discovered that a sudden significant transformation occurred in the Hanji field during the Japanese occupation period. Soda ash and caustic soda were commonly used for the pretreatment of White bark. Furthermore, a chemical bleaching powder was introduced for the pretreated White bark. Additionally, manual beating of the bark was replaced by mechanical beating methods. While these changes brought convenience to papermakers, they also resulted in a deterioration of Hanji quality. Furthermore, it was revealed that the term "Hanji" has been in use since at least 1908. Furthermore, this study clarified that Heulimtteugi is not the only traditional Hanji-making method in Korea. Instead, there existed Korea's own traditional Gadoomtteugi method, at least up to the 1930s, before the Japanese-style Gadoomtteugi became common in Korea. Additionally, for the first time, this study raises the possibility of the adoption of mold-hanging techniques into Korea's Heulimtteugi method from foreign sources.

Technology Trend of Construction Additive Manufacturing (건축 스케일 적층제조 기술동향)

  • Park, Jinsu;Kim, Kyungteak;Choi, Hanshin
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.528-538
    • /
    • 2019
  • The transition from "More-of-Less" markets (economies of scale) to "Less-of-More" markets (economies of scope) is supported by advances of disruptive manufacturing and reconfigurable-supply-chain management technologies. With the prevalence of cyber-physical manufacturing systems, additive manufacturing technology is of great impact on industry, the economy, and society. Traditionally, backbone structures are built via bottom-up manufacturing with either pre-fabricated building blocks such as bricks or with layer-by-layer concrete casting such as climbing form-work casting. In both cases, the design selection is limited by form-work design and cost. Accordingly, the tool-less building of architecture with high design freedom is attractive. In the present study, we review the technological trends of additive manufacturing for construction-scale additive manufacturing in particular. The rapid tooling of patterns or molds and rapid manufacturing of construction parts or whole structures is extensively explored through uncertainties from technology. The future regulation still has drawbacks in the adoption of additive manufacturing in construction industries.

Injection Mold Technology of Protein Chip for Point-of-Care (현장진단용 단백질 칩 사출금형기술)

  • Lee, Sung-Hee;Ko, Young-Bae;Lee, Jong-Won;Jung, Hae-Chul;Park, Jae-Hyun;Lee, Ok-Sung
    • Design & Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.74-78
    • /
    • 2012
  • A multi-cavity injection mold system of protein chip for point-of-care with cavity temperature and pressure sensors was proposed in this work. In advance of manufacturing for the multi-cavity injection mold system, a single cavity injection mold system to mold protein chip was considered. Injection molding analysis for the presented system was performed to optimize the process of the molding and suggest guides to design. On the basis of the results for the single cavity system, a multi-cavity injection mold system for protein chip was analyzed, designed and manufactured with cavity temperature and pressure sensors. Results of balanced filling for protein chip models were obtained from the presented mold system.

  • PDF

Ultra-precision Cutting of Polycarbonate for Optical Components by Using Elliptical Vibration Cutting Method (타원진동절삭가공법에 의한 광학부품용 폴리카보네이트 수지의 초정밀가공)

  • Song, Young-Chan;Park, Chun-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.42-49
    • /
    • 2009
  • The optical elements made of plastics are normally produced by mass production such as injection molding with use of precision dies and molds. It costs to prepare the dies and molds, and it is only justified to prepare such expensive dies and molds when the parts are massively produced. On the other hand, it is too expensive and inefficient when precision plastic parts are needed only in small quantities, such as a case of trial manufacturing of new products. An ultra-precision diamond cutting is one of promising processes to produce the precision plastic parts in such cases. But it is commonly believed that an ultra-precision cutting of plastics for optical components is very difficult, because they are thermo-plastic material. In the present research, an ultra-precision diamond cutting of polycarbonate (PC), that is one of typical optical materials, was tried by using elliptical vibration cutting method. It is experimentally proved that good optical surfaces were obtained by using elliptical vibration cutting in cases of grooving and flat surfaces. The maximum surface roughness of less than 60 nm in peak to valley value is acquired.

International Development Trend and Technical Issues of Metal Additive Manufacturing (금속 적층제조기술의 국내외 개발동향과 기술적 이슈)

  • Kang, Min-Cheol;Ye, Dea-Hee;Go, Geun-Ho
    • Journal of Welding and Joining
    • /
    • v.34 no.4
    • /
    • pp.9-16
    • /
    • 2016
  • Metal parts are produced by conventional methods such as casting, forging and cutting, extrusion, etc. However, nowadays, with additive manufacturing (AM), it is possible to directly commercialize by means of stacking of equipment to the 3D drawing and use of high precision tools such as laser source. Thus, drawing of materials is an important aspect in delivering good products. AM deals with production of lighter aircraft parts and few more three-dimensional molds, it wish to manufacture special medical parts and want to steadily expand the new market area. The cost of related equipment and materials are still expensive and difficult to obtain on a mass production. However, the ability to make changes and lead the innovation in the paradigm of traditional manufacturing process is still effective. In this paper, we introduce metal AM and the principles of the related devices, metal powder production process, and their application.

Design and Manufacture of Composite Machine Tool Structures for High Speed Milling Machines (고속 밀링 머신용 복합재료 이송부의 설계와 제작)

  • 서정도;김학성;김종민;최진경;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.223-226
    • /
    • 2002
  • To maximize the productivity in machining molds and dies, machine tools should operate at high speeds. However, the productivity of mold manufacturing has not increased significantly because CNC milling machines have massive slides, which do not allow rapid acceleration and deceleration during the frequent starts/stops encountered in machining molds and dies. This paper presents the use of composites for these slides to overcome this limitation. The vertical and horizontal slides of a large CNC machine were constructed by bonding high-modulus carbon-fiber epoxy composite sandwiches to welded steel structures using adhesives. These composite structures reduced the weight of the vertical and horizontal slides by 34% and 26%, respectively, and increased damping by 1.5 to 5.7 times without sacrificing the stiffness. Without much tuning, this machine had a positional accuracy of $\pm5\mu\textrm{m}$ per 300 m of the slide displacement.

  • PDF

Die and mold technology of in-mold labeling in functional packaging (기능성 생활용기 인 몰드 라벨링 금형 성형 기술)

  • Kim, Yu-Jin;Jung, Gui-Jae;Gong, Sung-Ho;Shin, Jang-Soon;Yoon, Gil-Sang;Jung, Woo-Chul;Kim, Gun-Hee;Seo, Tae-Il
    • Design & Manufacturing
    • /
    • v.2 no.6
    • /
    • pp.17-22
    • /
    • 2008
  • Recently, the demand of high-productivity injection mold increases since the consumption of packaging grows in the world. Stack mold is composed of more than two molds and it has very high productivity and economic efficiency. In advanced country, stack mold which has was developed already but, in occasion of domestic mold industry, there is no study of stack mold. In this study, die and mold of in-mold labeling was developed for securing the technique of manufacturing high-productivity mold.

  • PDF

Numerical Study of the Deformation Characteristics for Circle Shaped and Square Shaped PET Bottles under Compressive Loads (원형PET용기와 사각PET용기의 압축하중시 변형거동에 관한 수치적 연구)

  • Cho, S.H.;Kwon, C.H.;Park, G.M.;Ko, Y.B.
    • Transactions of Materials Processing
    • /
    • v.23 no.1
    • /
    • pp.5-9
    • /
    • 2014
  • Although much research has been conducted to reduce the thickness of PET bottles in order to save manufacturing costs, the challenge remains of guaranteeing mechanical strength for top-loaded thin PET bottles. The current study investigates the large deformation characteristics of a circle shaped PET bottle and a square shaped PET bottle when compressively loaded using FEA. The arc length method is used in the nonlinear FEA to understand the buckling phenomenon. For PET bottles with the same capacity, the circle shaped bottle shows more resistance to buckling and compression loading than the square shaped bottle.

Micro cutting process technology for micro molds parts (마이크로 금형 부품을 위한 마이크로 절삭가공 기술)

  • Ha, Seok-Jae;Park, Jeong-Yeon;Kim, Gun-Hee;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.13 no.1
    • /
    • pp.5-12
    • /
    • 2019
  • In this paper, we studied the micro tool deflection, micro cutting with low temperature, and deformation of micro ribs caused by cutting forces. First, we performed an integrated machining error compensation method based on captured images of tool deflection shapes in micro cutting process. In micro cutting process, micro tool deflection generates very serious problems in contrast to macro tool deflection. To get the real images of micro tool deflection, it is possible to estimate tool deflection in cutting conditions modeled and to compensate for machining errors using an iterative algorithm correcting tool path. Second, in macro cutting fields, the cryogenic cutting process has been applied to cut the refractory metal but, the serious problem may be generated in micro cutting fields by the cryogenic environment. However, if the proper low temperature is applied to micro cutting area, the cooling effect of cutting heat is expected. Such effect can make the reduction of tool wear and burr formation. For verifying this passibility, the micro cutting experiment at low temperature was performed and SEM images were analyzed. Third, the micro pattern was deformed by the cutting forces and the shape error occurred in the sidewall multi-step cutting process were minimized. As the results, the relationship between the cutting conditions and the deformation of micro-structure during micro cutting process was investigated.