• Title/Summary/Keyword: manufacturing irregularities

Search Result 16, Processing Time 0.023 seconds

Finite element modeling of manufacturing irregularities of porous materials

  • Gonzalez, Fernando J. Quevedo;Nuno, Natalia
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.3 no.1
    • /
    • pp.1-14
    • /
    • 2016
  • Well-ordered porous materials are very promising in orthopedics since they allow tailoring the mechanical properties. Finite element (FE) analysis is commonly used to evaluate the mechanical behavior of well-ordered porous materials. However, FE results generally differ importantly from experimental data. In the present article, three types of manufacturing irregularities were characterized on an additive manufactured porous titanium sample having a simple cubic unit-cell: strut diameter variation, strut inclination and fractured struts. These were included in a beam FE model. Results were compared with experimental data in terms of the apparent elastic modulus (Eap) and apparent yield strength (SY,ap). The combination of manufacturing irregularities that yielded the closest results to experimental data was determined. The idealized FE model resulted in an Eap one order of magnitude larger than experimental data and a SY,ap almost twice the experimental values. The strut inclination and fractured struts showed the strongest effects on Eap and SY,ap, respectively. Combining the three manufacturing irregularities produced the closest results to experimental data. The model also performed well when applied to samples having different structural dimensions. We recommend including the three proposed manufacturing irregularities in the FE models to predict the mechanical behavior of such porous structures.

Investigation of Micromorphological Characteristics of Acupuncture Needle Tip Using SEM-EDX (SEM-EDX를 이용한 침 끝의 미세 부착물의 조성에 대한 관찰)

  • Jang, In-Soo;Son, Dong-Hyuk;Song, Ho-Seop;Lee, In-Hwan;Park, Jong-Bae
    • Journal of Acupuncture Research
    • /
    • v.22 no.6
    • /
    • pp.135-140
    • /
    • 2005
  • Objectives : There have been several studies about the quality of acupuncture needle tip recently. We have investigated the condition of the tip of the acupuncture needles in the last studies. In the former studies, we discovered the metallic scuff, lumps and irregularities of the acupuncture needle tips under the microscope. But, no information was available on those foreign materials' identity. Methods : We have selected 200 needles of 1000 pieces from several companies by randomized methods. And we observed the tip of the 6 needles selected finally at ${\times}1000\;or\;{\times}3000$ magnification and analyzed the components of the metallic scuff, lumps and irregularities of the needle tips with a SEM-EDX analyser. Results : We found that the identity of the metallic scuff, lumps and irregularities of the needle tips were metallic materials and silicon. For example, A point was composed of Fe(69.78%), Cr(17.71%), Ni(8.11%), Zn(2.04%), Si(1.23%), Mn(1.12%), and B point was composed of Si(66.40%), Fe(26.76%), Cr(6.84%). Conclusion : The results of this study confirm that there is a real possibility of the remaining of metallic materials and silicon in body of patient, after acupuncture treatment. Therefore, it is necessary to intensify our efforts to make needles of good quality and to concentrate on manufacturing process of acupuncture needles completely to be free from danger in acupuncture treatment.

  • PDF

Development of Surface Finishing Methodology for the Laminated Pattern Removal of VLM-ST Parts (VLM-ST 시작품의 적층무늬 제거를 위한 표면처리 방법론 개발)

  • Lee Sang-Ho;Kim Hyo-Chan;Song Min-Sup;Yang Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.202-209
    • /
    • 2005
  • A new effective thick-layered RP process, Transfer-type Variable Lamination Manufacturing using expandable polystyrene foam (VLM-ST) has been developed with thick layers and sloped surfaces. VLM-ST has the innate advantages by virtue of its working principle: high building speed, low cost for introduction and maintenance of VLM-ST apparatus, little staircase surface irregularities of parts. Despite these advantages in VLM-ST, the surface roughness of VLM-ST parts is still inadequate to be used as RP master patterns for rapid tooling (RT). This paper describes the systematic and effective methodology to remove the laminated pattern and improve the surface roughness for VLM-ST parts. From the results of surface finishing of VLM-ST parts, it can be seen that the laminated pattern is completely removed and the surface characteristics such as surface roughness, surface hardness, and paintability are improved.

Fault Prognostics of a SMPS based on PCA-SVM (PCA-SVM 기반의 SMPS 고장예지에 관한 연구)

  • Yoo, Yeon-Su;Kim, Dong-Hyeon;Kim, Seol;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.47-52
    • /
    • 2020
  • With the 4th industrial revolution, condition monitoring using machine learning techniques has become popular among researchers. An overload due to complex operations causes several irregularities in MOSFETs. This study investigated the acquired voltage to analyze the overcurrent effects on MOSFETs using a failure mode effect analysis (FMEA). The results indicated that the voltage pattern changes greatly when the current is beyond the threshold value. Several features were extracted from the collected voltage signals that indicate the health state of a switched-mode power supply (SMPS). Then, the data were reduced to a smaller sample space by using a principal component analysis (PCA). A robust machine learning algorithm, the support vector machine (SVM), was used to classify different health states of an SMPS, and the classification results are presented for different parameters. An SVM approach assisted by a PCA algorithm provides a strong fault diagnosis framework for an SMPS.

Bending Optimization of Archwire for Orthodontics Considering the Nonlinearity of Periodontal Ligament (치주인대의 비선형성을 고려한 치아 교정용 호선의 굽힘 최적화)

  • Heo, Ji-In;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.77-83
    • /
    • 2013
  • Orthodontics is a branch of dentistry that is concerned with the study and treatment of malocclusion, which may result from tooth irregularities, disproportionate jaw relationships, or both. Orthodontic devices consist of brackets, archwire connected to each bracket, and bends and hooks for auxiliary functions. Basically, orthodontics involves the interaction of brackets and archwire. It should be noted that uncontrolled tipping can occur due to unwanted movement of the teeth. The bending of an archwire can control the angle of an archwire and the rotation of a tooth. In this study, we predict the relationship between the bending angle of an archwire and the rotation of a tooth using the Kriging interpolation method. Also, we calculate the angle of an archwire that occurs at the minimum value of tooth rotation.

Development of a system for measuring inside & outside diameters of automobile hub (자동차 허브 내.외경 측정 시스템 개발)

  • 윤규택;이동주;최만용;박혜원;박정학]
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.363-368
    • /
    • 2002
  • An automobile hub is composed of a hollow cylindrical part with inner and outer diameters. These hub diameters must be precise, as any irregularities in them (diameters) can influence/degrade the motion of an automobile with this problem. Highly accurate and reliable hub inner and outer diameters measurement systems are therefore required for inspection of the diameters. In this research, an automobile hub inner and outer diameters measurement system has been developed and tested. The system consists of measuring heads with LVDT sensors, and associated software for automatic measurement and calibration of the diameters and the sensors respectively. The system has been evaluated in comparison with an existing measurement system, and the following outcomes have been achieved; .Improved and guaranteed quality and reliability .Increased productivity and cost reduction. These results prove the system developed in this research to be suitable for automobile hub inspection.

  • PDF

Development of Multi-functional Hotwire Cutting System using EPS-foam (발포 폴리스티렌 폼을 이용한 다기능 열선절단장치 개발)

  • 이상호;김효찬;양동열;박승교;김찬국
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1414-1417
    • /
    • 2004
  • A thick-layered RP process, transfer-type variable lamination manufacturing using expandable polystyrene foam (VLMST) has been developed to have the advantageous characteristics such as high building speed, low cost for introduction and maintenance of VLM-ST apparatus, and little staircase surface irregularities of parts. However, VLM-ST has difficulty fabricating an axisymmetric shape and a large-sized freeform shape because of the limited sloping angles and small build size. The objective of this paper is to develop a multi-functional hotwire cutting system using EPS-foam (MHC). MHC employs a four-axis synchronized hotwire cutter with the structure of two XY movable heads and a turntable. In order to examine the applicability of the developed MHC apparatus, an axisymmetric shape, a polyhedral shape and a large-sized freeform shape were fabricated on the apparatus.

  • PDF

Transmission Error Analyis of Spur Gear Trains with Tolerances (기어의 공차에 따른 스퍼 기어열의 전달 오차 해석)

  • Han, Hyung Suk;Kim, Tae Young;Park, Tae Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.90-100
    • /
    • 1997
  • Sppur gear trains are used widely in high precision machines because gear trains have an advantage of exact transmission of angular velocity. Especially, gear trains are used in high quali8ty photocopying and photography OA machines. In general, gears have errors in manufacturing and assembling process and the errors are limited by tolerances. As the result, the tolerances cause the performance error. Therfore, it is important to predict transmission error caused by the tolerances for the tolerance design. Earlier tolerance design methods use mainly experimental and geometrical techniques. In this paper, a method for gear train analysis with tolerance is proposed. Because the method uses dynamic contacts, it is possible to consider irregularities and assemble errors of gears. In addition, the method can predit dynamic loads on the teeth of gears.

  • PDF

Investigation of Micromorphological Characteristics of Acupuncture Needle Tip Using SEM in Korea(2) (주사전자현미경(SEM)을 이용한 일회용침 끝의 미세 형태에 대한 관찰(2))

  • Jang, In-soo;Park, Jong-bae;Song, Beom-yong;Lee, Chang-hyun;Kim, Hyun-soo
    • Journal of Acupuncture Research
    • /
    • v.20 no.5
    • /
    • pp.151-158
    • /
    • 2003
  • Objective: There have not been so many study about the quality of acupuncture needle tip. In order to ensure safe acupuncture treatment, the quality of needle tip is essential. Therefore we investigated the current condition of the tip of the acupuncture needles in Korea. Methods: We have selected the needles that made by 8 companies in Korea, and selected 50 pieces from 1000 pieces each company by randomized methods. and observed the tip of each needle using a scanning electron microscope at ${\times}800$ magnification. Results & Discussion: We found that needles had several defects such as scratch marks on the surface, metallic scuff, lumps and irregularities of the needle tips, stubbed or malformed tips, tips of point off-center, peeled off coated tips. There was much difference on the quality of needle among the manufacturer, and some needles seem to need to do- thorough quality control. It is necessary to intensify quality management and a concentrated control on manufacturing process of acupuncture needles.

  • PDF

Steady-Flow Characteristics of Bundle Fluid in Drawing (인발 집속유체의 정상유동 특성)

  • Huh You;Kim Jong-Seong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.612-621
    • /
    • 2006
  • Drawing is a mechanical operation attenuating material thickness to an appropriate level for the next processing or end usage. When the input material has a form of bundle or bundles made of very thin and long shaped wires or fibers, this attenuation operation is called 'bundle drawing' or 'drafting'. Bundle drawing is being used widely in manufacturing micro sized wires or staple yarns. However, the bundle processed by this operation has more or less defects in the evenness of linear density. Such irregularities cause many problems not only for the product quality but also for the efficiency of the next successive processes. In this research a mathematical model for the dynamic behavior of the bundle fluid is to be set up on the basis of general physical laws containing physical variables, i.e. linear density and velocity as the dynamic state variables of the bundle fluid. The governing equations resulting from the modeling show that they appear in a slightly different form from what they do in a continuum fluid. Then, the governing equations system is simplified in a steady state and the bundle dynamics is simulated, showing that the shape of the velocity profiles depends on two model parameters. Experiments confirm that the model parameters are to be well adjusted to show a coincidence with the theoretical analysis. The higher the drawing ratio and drawing speed we, the more sensitive becomes the bundle flow to exogenous disturbances.