Acknowledgement
Supported by : Natural Sciences and Engineering Research Council of Canada (NSERC)
References
- Adjari, A., Nayeb-Hashemi, H., Canavan, P. and Warner, G. (2008), "Effect of defects on elastic-plastic behavior of cellular materials", Mater. Sci. Eng., A, 487(1), 558-567. https://doi.org/10.1016/j.msea.2007.10.050
- Ahmadi, S.M., Campoli, G., Amin Yavari, S., Sajadi, B., Wauthle, R., Schrooten, J., Weinans, H. and Zadpoor, A.A. (2014), "Mechanical behavior of open-cell porous biomaterials made of diamond lattice unit cells", J. Mech. Behav. Biomed. Mater., 34, 106-115. https://doi.org/10.1016/j.jmbbm.2014.02.003
- Alkhader, M. and Vural, M. (2008), "Mechanical response of cellular solids: Role of cellular topology and microstructural irregularity", Int. J. Eng. Sci., 46(10), 1035-1051. https://doi.org/10.1016/j.ijengsci.2008.03.012
- Arabnejad, S. and Pasini, D. (2012), "Multiscale design and multiobjective optimization of orthopedic hip implants with functionally graded cellular material", J. Biomech. Eng., 134(3), 031004-1-031004-10. https://doi.org/10.1115/1.4006115
- Arabnejad, S. and Pasini, D. (2013), "Mechanical properties of lattice materials via asymptotic homogenization and comparison with alternative homogenization methods", Int. J. Mech. Sci., 77, 249-262. https://doi.org/10.1016/j.ijmecsci.2013.10.003
- ARCAM AB. Ti6Al4V ELI Titanium Alloy. From http://www.arcam.com/wp-content/uploads/Arcam-Ti6Al4V-ELI-Titanium-Alloy.pdf
- Ashby, M.F. (2006), "The properties of foams and lattices", Philos. Trans. R. Soc. Lonodon, Ser. A, 364(1838), 15-30. https://doi.org/10.1098/rsta.2005.1678
- Barbas, Q., Bonnet, A.-S., Lipinski, P., Pesci, R. and Dubois, G. (2012), "Development and mechanical characterization of porous titanium bone substitutes", J. Mech. Behav. Biomed. Mater., 9, 34-44. https://doi.org/10.1016/j.jmbbm.2012.01.008
- Campoli, G., Borleffs, M.S., Amin Yavari, S., Wauthle, R., Weinans, H. and Zadpoor, A.A. (2013), "Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing", Mater. Des., 49, 957-965. https://doi.org/10.1016/j.matdes.2013.01.071
- Chen, C., Lu, T.J. and Fleck, N.A. (1999), "Effect of imperfections on the yielding of two-dimensional foams", J. Mech. Phys. Solid., 47(11), 2235-2272. https://doi.org/10.1016/S0022-5096(99)00030-7
- Fraldi, M., Esposito, L., Perrella, G., Cutolo, A. and Cowin, S.C. (2010), "Topological optimization in hip prosthesis design", Biomech. Model. Mechanobiol., 9(4), 389-402. https://doi.org/10.1007/s10237-009-0183-0
- Harrigan, J., Reida, S. and Yaghoubib, S. (2010), "The correct analysis of shocks in a cellular material", Int. J. Impact Eng., 37(8), 918-927. https://doi.org/10.1016/j.ijimpeng.2009.03.011
- Hazlehurst, K., Wang, C.J. and Stanford, M. (2013), "Evaluation of the stiffness characteristics of square pore CoCrMo cellular structures manufactured using laser melting technology for potential orthopaedic applications", Mater. Des., 51, 949-955. https://doi.org/10.1016/j.matdes.2013.05.009
- Heo, H., Ju, J. and Kim, D.-M. (2013), "Compliant cellular structures: Application to a passive morphing airfoil", Compos. Struct., 106, 560-569. https://doi.org/10.1016/j.compstruct.2013.07.013
- Herrera, A., Yanez, A., Martel, O., Afonso, H. and Monopoli, D. (2014), "Computational study and experimental validation of porous structures fabricated by electron beam melting: A challenge to avoid stress shielding", Mater. Sci. Eng., C, 45, 89-93. https://doi.org/10.1016/j.msec.2014.08.050
- Karamooz Ravari, M.R. and Kadkhodaei, M. (2015), "A computationally efficient modeling approach for predicting mechanical behavior of cellular lattice structures", J. Mater. Eng. Perform., 24(1), 245-252. https://doi.org/10.1007/s11665-014-1281-4
- Kuiper, J.H. and Huiskes, R. (1997), "Mathematical optimization of elastic properties: application to cementless hip stem design", J. Biomech. Eng., 119(2), 166-174. https://doi.org/10.1115/1.2796076
- Kumar, V., Manogharan, G. and Cormier, D.R. (2009), "Design of periodic cellular structures for heat exchanger applications", 20th Solid Freeform Fabrication Symposium, Texas, August, 738-748.
- Luxner, M.H., Stampfl, J. and Pettermann, H. (2007), "Numerical simulations of 3D open cell structures-Influence of structural irregularities on elastoplasticity and deformation localization", Int. J. Solids Struct., 44(9), 2990-3003. https://doi.org/10.1016/j.ijsolstr.2006.08.039
- Luxner, M.H., Stampfl, J. and Pettermann, H.E. (2005), "Finite element modeling concepts and linear analyses of 3D regular open cell structures", Mech. Behav. Cell. Solid., 40(22), 5859-5866.
- Luxner, M.H., Stampfl, J. and Pettermann, H.E. (2009), "Nonlinear simulations on the interaction of disorders and defects in open cell structures", Comput. Mater. Sci., 47(2), 418-428. https://doi.org/10.1016/j.commatsci.2009.09.003
- Maloney, K.J., Fink, K.D., Schaedler, T.A., Kolodziejska, J.A., Jacobsen, A.J. and Roper, C.S. (2012), "Multifunctional heat exchangers derived from three-dimensional micro-lattice structures", Int. J. Heat Mass Transfer., 55(9-10), 2486-2493. https://doi.org/10.1016/j.ijheatmasstransfer.2012.01.011
- Parthasarathy, J., Starly, B. and Raman, S. (2011), "A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications", J. Manuf. Processes, 13(2), 160-170. https://doi.org/10.1016/j.jmapro.2011.01.004
- Petrovic, V., Blasco, J.R., Portoles, L., Morales, I., Primo, V., Atienza, C., Moreno, J.F. and Belloch, V. (2012), A study of mechanical and biological behavior of porous Ti6Al4V fabricated on EBM, Innovative Developments in Virtual and Physical Prototyping, Taylor and Francis, London, United Kingdom, 115-120.
- Quevedo Gonzalez, F.J. and Nuno, N. (2015), "Finite element modelling approaches for well-ordered porous metallic materials for orthopaedic applications: cost effectiveness and geometrical considerations", Comput. Meth. Biomech. Biomed. Eng., 1-10.
- Smith, M., Guan, Z. and Cantwell, W.J. (2013), "Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique", Int. J. Mech. Sci., 67, 28-41. https://doi.org/10.1016/j.ijmecsci.2012.12.004
- Spadoni, A. and Ruzzene, M. (2007), "Static aeroelastic response of chiral-core airfoils", J. Intell. Mater. Syst. Struct., 18, 1067-1075. https://doi.org/10.1177/1045389X06072361
- Xiao, D., Yang, Y., Su, X., Wang, D. and Sun, J. (2013), "An integrated approach of topology optimized design and selective laser melting process for titanium implants materials", Bio-Medical Mater. Eng., 23(5), 433-445.
- Zhu, H.X., Hobdell, J.R. and Windle, A.H. (2001), "Effects of cell irregularity on the elastic properties of 2D Voronoi honeycombs", J. Mech. Phys. Solids., 49(4), 857-870. https://doi.org/10.1016/S0022-5096(00)00046-6
Cited by
- Lattice Structures and Functionally Graded Materials Applications in Additive Manufacturing of Orthopedic Implants: A Review vol.1, pp.2, 2017, https://doi.org/10.3390/jmmp1020013
- Influence of load orientation and of types of loads on the mechanical properties of porous Ti6Al4V biomaterials vol.135, 2017, https://doi.org/10.1016/j.matdes.2017.09.045
- Modelling and characterization of a porosity graded lattice structure for additively manufactured biomaterials vol.121, 2017, https://doi.org/10.1016/j.matdes.2017.02.021
- A validated finite element analysis procedure for porous structures vol.189, pp.None, 2020, https://doi.org/10.1016/j.matdes.2020.108546
- Computational analysis of the effects of geometric irregularities and post-processing steps on the mechanical behavior of additively manufactured 316L stainless steel stents vol.15, pp.12, 2020, https://doi.org/10.1371/journal.pone.0244463
- Investigation of The Effect of Different Prosthesis Designs and Numbers on Stress, Strain and Deformation Distribution vol.12, pp.4, 2016, https://doi.org/10.24107/ijeas.816227
- Improving the Accuracy of Analytical Relationships for Mechanical Properties of Permeable Metamaterials vol.11, pp.3, 2016, https://doi.org/10.3390/app11031332
- Structure Optimization of a High-Temperature Oxygen-Membrane Module Using Finite Element Analysis vol.14, pp.16, 2021, https://doi.org/10.3390/en14164992