• Title/Summary/Keyword: manufacturing energy

Search Result 1,919, Processing Time 0.029 seconds

Stand-alone Real-time Healthcare Monitoring Driven by Integration of Both Triboelectric and Electro-magnetic Effects (실시간 헬스케어 모니터링의 독립 구동을 위한 접촉대전 발전과 전자기 발전 원리의 융합)

  • Cho, Sumin;Joung, Yoonsu;Kim, Hyeonsu;Park, Minseok;Lee, Donghan;Kam, Dongik;Jang, Sunmin;Ra, Yoonsang;Cha, Kyoung Je;Kim, Hyung Woo;Seo, Kyoung Duck;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.86-92
    • /
    • 2022
  • Recently, the bio-healthcare market is enlarging worldwide due to various reasons such as the COVID-19 pandemic. Among them, biometric measurement and analysis technology are expected to bring about future technological innovation and socio-economic ripple effect. Existing systems require a large-capacity battery to drive signal processing, wireless transmission part, and an operating system in the process. However, due to the limitation of the battery capacity, it causes a spatio-temporal limitation on the use of the device. This limitation can act as a cause for the disconnection of data required for the user's health care monitoring, so it is one of the major obstacles of the health care device. In this study, we report the concept of a standalone healthcare monitoring module, which is based on both triboelectric effects and electromagnetic effects, by converting biomechanical energy into suitable electric energy. The proposed system can be operated independently without an external power source. In particular, the wireless foot pressure measurement monitoring system, which is rationally designed triboelectric sensor (TES), can recognize the user's walking habits through foot pressure measurement. By applying the triboelectric effects to the contact-separation behavior that occurs during walking, an effective foot pressure sensor was made, the performance of the sensor was verified through an electrical output signal according to the pressure, and its dynamic behavior is measured through a signal processing circuit using a capacitor. In addition, the biomechanical energy dissipated during walking is harvested as electrical energy by using the electromagnetic induction effect to be used as a power source for wireless transmission and signal processing. Therefore, the proposed system has a great potential to reduce the inconvenience of charging caused by limited battery capacity and to overcome the problem of data disconnection.

Comparison of Characteristics of Electrodeposited Lithium Electrodes Under Various Electroplating Conditions (다양한 전착조건에서 제작된 리튬 전극의 특성 연구)

  • Lim, Rana;Lee, Minhee;Kim, Jeom-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.3
    • /
    • pp.128-137
    • /
    • 2019
  • A lithium is the lightest metal on the earth. It has some attractive characteristics as a negative electrode material such as a low reduction potential (-3.04 V vs. SHE) and a high theoretical capacity ($3,860mAh\;g^{-1}$). Therefore, it has been studied as a next generation anode material for high energy lithium batteries. The thin lithium electrode is required to maximize the efficiency and energy density of the battery, but the physical roll-press method has a limitation in manufacturing thin lithium. In this study, thin lithium electrode was fabricated by electrodeposition under various conditions such as compositions of electrolytes and the current density. Deposited lithium showed strong relationship between process condition and its characteristics. The concentration of electrolyte affects to the shape of deposited lithium particle. As the concentration increases, the shape of particle changes from a sharp edged long one to a rounded lump. The former shape is favorable for suppressing dendrite formation and the elec-trode shows good stripping efficiency of 92.68% (3M LiFSI in DME, $0.4mA\;cm^{-2}$). The shape of deposited particle also affected by the applied current density. When the amount of current applied gets larger the shape changes to the sharp edged long one like the case of the low concentration electrolyte. The combination of salts and solvents, 1.5M LiFSI + 1.5M LiTFSI in DME : DOL [1 : 1 vol%] (Du-Co), was applied to the electrolyte for the lithium deposition. The lithium electrode obtained from this electrolyte composition shows the best stripping efficiency (97.26%) and the stable reversibility. This is presumed to be due to the stability of the surface film induced by the Li-F component and the DOL effect of providing film flexibility.

Development of Heated-Air Dryer for Agricultural Waste Using Waste Heat of Incineration Plant (소각장 폐열을 활용한 농업폐기물 열풍 건조장치 개발)

  • Song, Dae-Bin;Lim, Ki-Hyeon;Jung, Dae-Hong
    • Journal of agriculture & life science
    • /
    • v.53 no.5
    • /
    • pp.137-143
    • /
    • 2019
  • To manufacturing of solid fuel by reuse of the wastes, the drying unit which have 500 kg/hr of drying capacity was developed and experimentally evaluate the performance. The spinach grown in Nam-hae island were used for the experiments and investigated of the heated-air drying characteristics as the inlet amount of raw materials, raw material stirring status, conveying type and drying time. The drying air heated by the energy derived from the steam which is supplied from the incineration plant. The moisture contents of raw materials were measured 85.65%. The inlet flow rate of drying air made a difference as the depth of the raw materials loaded on the drying unit and temperature has showed 108~144℃. The drying speed of the mixed drying more than doubled as that of non mixed drying under the same drying type, inlet amount, drying time and drying air temperature. In each experiment, the drying capacity have showed over 500 kg/hr. A drying efficiency of the ratio of drying consumption energy to input energy was 33.46%, lower than the average of 57.76% for the 157 conventional dryers. Because developed dryer must have a drying time of less than one hour, it is considered that the dry efficiency has been reduced due to the loss of wind volume during drying. If waste heat from incineration plant is used as a direct heat source, the dry air temperature is expected to be at least 160℃, greatly improving the drying capacity.

Analysis of the Effect of the Etching Process and Ion Injection Process in the Unit Process for the Development of High Voltage Power Semiconductor Devices (고전압 전력반도체 소자 개발을 위한 단위공정에서 식각공정과 이온주입공정의 영향 분석)

  • Gyu Cheol Choi;KyungBeom Kim;Bonghwan Kim;Jong Min Kim;SangMok Chang
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.255-261
    • /
    • 2023
  • Power semiconductors are semiconductors used for power conversion, transformation, distribution, and control. Recently, the global demand for high-voltage power semiconductors is increasing across various industrial fields, and optimization research on high-voltage IGBT components is urgently needed in these industries. For high-voltage IGBT development, setting the resistance value of the wafer and optimizing key unit processes are major variables in the electrical characteristics of the finished chip. Furthermore, the securing process and optimization of the technology to support high breakdown voltage is also important. Etching is a process of transferring the pattern of the mask circuit in the photolithography process to the wafer and removing unnecessary parts at the bottom of the photoresist film. Ion implantation is a process of injecting impurities along with thermal diffusion technology into the wafer substrate during the semiconductor manufacturing process. This process helps achieve a certain conductivity. In this study, dry etching and wet etching were controlled during field ring etching, which is an important process for forming a ring structure that supports the 3.3 kV breakdown voltage of IGBT, in order to analyze four conditions and form a stable body junction depth to secure the breakdown voltage. The field ring ion implantation process was optimized based on the TEG design by dividing it into four conditions. The wet etching 1-step method was advantageous in terms of process and work efficiency, and the ring pattern ion implantation conditions showed a doping concentration of 9.0E13 and an energy of 120 keV. The p-ion implantation conditions were optimized at a doping concentration of 6.5E13 and an energy of 80 keV, and the p+ ion implantation conditions were optimized at a doping concentration of 3.0E15 and an energy of 160 keV.

On the manufacturing of WPC (Wood Plastic Composites) with Heat-Catalyst Polymerization (I) - On the characteristics of composites made from monomer Methyl MethacryIate and several commercial woods in Korea (가열(加熱)·촉매중합법(觸媒重合法)에 의한 목재(木材)·고분자복합체(高分子複合體) 제조(製造)(I) - MMA에 의한 한국산(韓國産) 주요목재(主要木材)의 복합체특성(複合體特性))

  • Cho, Nam-Seok;Jo, Jae-Myeong;Ahn, Won-Yong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.3-16
    • /
    • 1974
  • One of the disadvantages of. wood and wood products is their hydroscopicity or dimensional instability. This is responsible for the loss of green volume of lumber as seasoning degrade. Dimensional stabilization is needed to substantially reduce seasoning defects and degrades and for increasing the serviceability of wood products. Recently, considerable world-wide attention has been drawn to the so-called Wood-Plastic Composites by irradiation-and heat-catalyst-polymerization methods and many research and developmental works have been reported. Wood-Plastic Composites are the new products having the superior mechanical and physical properties and the combinated characteristics of wood and plastic. The purpose of this experiment was to obtain the basic data for the improvement of wooden materials by manufacturing WPC. The species examined were Mulpurae-Namoo (Fraxinus, rhynchophylla), Sea-Namoo (Carpinus laxiflora), Cheungcheung-Namoo (Cornus controversa), Gorosae-Namoo (Acermono), Karae-Namoo(Juglans mandshurica) and Sanbud-Namoo (Prunus sargentii), used as blocks of type A ($3{\times}3{\times}40cm$) and type B ($5{\times}5{\times}60cm$), and were conditioned to about 10~11% moisture content before impregnation in materials humidity control room. Methyl methacrylate (MMA) as monomer and benzoyl peroxide (BPO) as initiator are used. The monomer containing BPO was impregnated into wood pieces in the vacuum system. After impregnation, the treated samples were polymerized with heat-catalyst methods. The immersed weights of monomer in woods are directly proportionated to the impregnation times. Monomer impregnation properties of Cheungcheung-Namoo, Mulpurae-Namoo and Seo-Namoo are relatively good, but in Karae-Namoo, it is very difficult to impregnate the monomer MMA. Fig. 3 shows the linear relation between polymer retentions in wood and polymerization times; that is, the polymer loadings are increasing with polymerization times. Furthermore species, moisture content, specific gravity and anatomical or conductible structure of wood, bulking solvents and monomers etc have effects on both of impregnation of monomer and polymer retention. Physical properties of treated materials are shown in table 3. Increasing rates of specific gravity are ranged 3 to 24% and volume swelling 3 to 10%. ASE is 20 to 46%, AE 14 to 50% and RWA 18 to 40%. Especially, the ASE in relation to absorption of liquid water increases approximately with increase of polymer content, although the bulking effect of the polymerization of monomer may also be influential. WPCs from Mulpurae-Namoo and Cheungcheung-Namoo have high dimensional stability, while its of Karae-Namoo and Seo-Namoo are-very low. Table 4 shows the mechanical properties of WPCs from 6 species. With its specific gravity and polymer loading increase, all mechanical properties are on the increase. Increasing rate of bending strength is 10 to 40%, compression strength 25 to 70%, ;impact bending absorbed energy 4 to 74% and tensile strength 18 to 56%. Mulpurae-Namoo and Cheungcheung-Namoo with high polymer content have considerable high increasing rate of strengths. But incase of Karae-Namoo with inferior monomer impregnation it is very low. Polymer retention in cell wall is 0.32 to 0.70%. Most of the polymer is accumulated in cell lumen. Effective. of polymer retention is 58.59% for Mulpurae-Namoo, 26.27% for Seo-Namoo, 47.98% for Cheungcheung-Namoo, 25.64% for Korosae-Namoo, 9.96% for Karae-Namoo and 25.84% for Sanbud-Namoo.

  • PDF

Development of Heat Exchanger for Fermentation Heat Utilization from Waste Woody Biomass (목질계 폐바이오메스의 발효열이용 열교환기의 개발)

  • Cho, Nam-Seok;Choi, Tae-Ho;Kim, Hong-Eun;Lee, Suk-Ho;Lee, Chung-Koo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.94-104
    • /
    • 2009
  • It is urgently required to develop the production of fermentation-heat energy from the waste agricultural and forest biomass and its effective heat exchanging system for the supply of warm water to rural households and greenhouses. In this study 3 helical-type and 1 plate-type heat exchangers using 3 different waste biomasses [e.g. hardwood (HW) sawdust (100%), softwood (SW) sawdust : HW sawdust (50 : 50) and HW sawdust : grass (90 : 10)] were applied in order to find out the best heat recovery system. The heat exchanger was basically considered to improve the overall heat recovery efficiency, to minimize heat loss and to simplify manufacturing, assembling and breaking up the fermenting beds. The helical-type heat exchanger (HX-H3) installed in fermenting bed of HW sawdust : grass (90 : 10) showed relatively higher temperature profiles, in particular mid- and upper-parts than lower and surface parts during 45-day fermentation process. The maximum temperature was ranged from $40^{\circ}C$ to $65^{\circ}C$ with average $60^{\circ}C$. The water temperature of tank outlet was ranged to $33{\sim}48^{\circ}C$ during whole measuring periods. By the way plate-type one (HX-P) installed in same biomass compositional fermenting bed showed $64.5{\sim}76.5^{\circ}C$ at center part, and $43{\sim}56^{\circ}C$ and $42{\sim}58^{\circ}C$, water tank and tank outlet temperatures, respectively, during 100 day measurement. It could be concluded that the plate-type heat exchanger (HX-P) provides not only the effective heating for the rural households and greenhouses, but also having the best heat recovery performance, easy manufacturing, assembling and breaking up the systems.

Recent Developments in Space Law (우주법(宇宙法)의 최근동향(最近動向))

  • Choi, June-Sun
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.1
    • /
    • pp.223-243
    • /
    • 1989
  • The practical application of modern space science and technology have resulted in many actual and potential gains of mankind. These successes have conditioned and increased the need for a viable space law regime and the challenge of space has ultimately led to the formation of an international legal regime for space. Space law is no longer a primitive law. It is a modern law. Yet, in its stages of growth, it has not reached the condition of perfection. Therefore, under the existing state of thing, we could carefully say that the space law is one of the most newest fields of jurisprudence despite the fact that no one has so far defined it perfectly. However, if space law can be a true jurisprudential entity, it must be definable. In defining the space law, first of all, the grasp of it's nature iis inevitable. Although space law encompasses many tenets and facets of other legal discriplines, its principal nature is public international law, because space law affects and effects law relating intercourse among nations. Since early 1960s when mankind was first able to flight and stay in outer space, the necessity to control and administrate the space activities of human beings has growingly increased. The leading law-formulating agency to this purpose is the United Nation's ad hoc Committee on Peaceful Uses of Outer Space("COPUOS"). COPUOS gave direction to public international space law by establishing the 1963 Declaration of Legal Principles Governing the Activities of the States in the Exploration and Use of Outer Space("1963 Declaration"). The 1963 Declaration is very foundation of the five international multilateral treaties that were established successively after the 1963 Declaration. The five treaties are as follows: 1) The Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space including Moon and other Celestial Bodies, 1967. 2) The Agreement on the Rescue of Astronauts, the Return of Astronauts, and the Return of Objects Launched into Outer Space, 1968. 3) The Convention on International Liability for Damage Caused by Space Objects, 1972. 4) The Convention on Registration of Objects Launched into Outer Space, 1974. 5) The Agreement Governing Activities of States on the Moon and Other Celestial Bodies: Moon Treaty, 1979. The other face of space law is it's commercial aspect. Space is no longer the sole domination of governments. Many private enterprise have already moved directly or indirectly into space activities in the parts such as telecommunications and space manufacturing. Since space law as the public international law has already advanced in accordance with the developments of space science and technology, there left only a few areas untouched in this field of law. Therefore the possibility of rapid growth of space law is expected in the parts of commerical space law, as it is, at this time, in a nascent state. The resources of the space environment are also commercially both valuable and important since the resources include the tangible natural resources to be found on the moon and other celestial bodies. Other space-based resources are solar energy, geostationary and geosynchronous orbital positions, radio frequencies, area possibly suited to human habitations, all areas and materials lending themselves to scientific research and inquiry. Remote sensing, space manufacturing and space transportation services are also another potential areas in which commercial. endeavors of Mankind can be carried out. In this regard, space insurance is also one of the most important devices allowing mankind to proceed with commercial space venture. Thus, knowlege of how space insurance came into existence and what it covers is necessary to understand the legal issues peculiar to space law. As a conclusion the writer emphasized the international cooperation of all nations in space activities of mankind, because space commerce, by its nature, will give rise many legal issues of international scope and concern. Important national and world-community interests would be served over time through the acceptance of new international agreements relating to remote sencing, direct television broadcasting, the use of nuclear power sources in space, the regularization of the activities of space transportation systems. standards respecting contamination and pollution, and a practical boundary between outer space and air space. If space activity regulation does not move beyond the national level, the peaceful exploration of space for all mankind will not be realized. For the efficient regulation on private and governmental space activities, the creation of an international space agency, similar to the International Civil Aviation Organization but modified to meet the needs of space technology, will be required. But prior to creation of an international organization, it will be necessary to establish, at national level, the Office of Air and Space Bureau, which will administrate liscence liscence application process, safety review and sale of launch equipment, and will carry out launch service.

  • PDF

A Study on Industry-specific Sustainability Strategy: Analyzing ESG Reports and News Articles (산업별 지속가능경영 전략 고찰: ESG 보고서와 뉴스 기사를 중심으로)

  • WonHee Kim;YoungOk Kwon
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.287-316
    • /
    • 2023
  • As global energy crisis and the COVID-19 pandemic have emerged as social issues, there is a growing demand for companies to move away from profit-centric business models and embrace sustainable management that balances environmental, social, and governance (ESG) factors. ESG activities of companies vary across industries, and industry-specific weights are applied in ESG evaluations. Therefore, it is important to develop strategic management approaches that reflect the characteristics of each industry and the importance of each ESG factor. Additionally, with the stance of strengthened focus on ESG disclosures, specific guidelines are needed to identify and report on sustainable management activities of domestic companies. To understand corporate sustainability strategies, analyzing ESG reports and news articles by industry can help identify strategic characteristics in specific industries. However, each company has its own unique strategies and report structures, making it difficult to grasp detailed trends or action items. In our study, we analyzed ESG reports (2019-2021) and news articles (2019-2022) of six companies in the 'Finance,' 'Manufacturing,' and 'IT' sectors to examine the sustainability strategies of leading domestic ESG companies. Text mining techniques such as keyword frequency analysis and topic modeling were applied to identify industry-specific, ESG element-specific management strategies and issues. The analysis revealed that in the 'Finance' sector, customer-centric management strategies and efforts to promote an inclusive culture within and outside the company were prominent. Strategies addressing climate change, such as carbon neutrality and expanding green finance, were also emphasized. In the 'Manufacturing' sector, the focus was on creating sustainable communities through occupational health and safety issues, sustainable supply chain management, low-carbon technology development, and eco-friendly investments to achieve carbon neutrality. In the 'IT' sector, there was a tendency to focus on technological innovation and digital responsibility to enhance social value through technology. Furthermore, the key issues identified in the ESG factors were as follows: under the 'Environmental' element, issues such as greenhouse gas and carbon emission management, industry-specific eco-friendly activities, and green partnerships were identified. Under the 'Social' element, key issues included social contribution activities through stakeholder engagement, supporting the growth and coexistence of members and partner companies, and enhancing customer value through stable service provision. Under the 'Governance' element, key issues were identified as strengthening board independence through the appointment of outside directors, risk management and communication for sustainable growth, and establishing transparent governance structures. The exploration of the relationship between ESG disclosures in reports and ESG issues in news articles revealed that the sustainability strategies disclosed in reports were aligned with the issues related to ESG disclosed in news articles. However, there was a tendency to strengthen ESG activities for prevention and improvement after negative media coverage that could have a negative impact on corporate image. Additionally, environmental issues were mentioned more frequently in news articles compared to ESG reports, with environmental-related keywords being emphasized in the 'Finance' sector in the reports. Thus, ESG reports and news articles shared some similarities in content due to the sharing of information sources. However, the impact of media coverage influenced the emphasis on specific sustainability strategies, and the extent of mentioning environmental issues varied across documents. Based on our study, the following contributions were derived. From a practical perspective, companies need to consider their characteristics and establish sustainability strategies that align with their capabilities and situations. From an academic perspective, unlike previous studies on ESG strategies, we present a subdivided methodology through analysis considering the industry-specific characteristics of companies.

Economic Value of Industrial Water Use (공업용수의 수종별 경제적 가치 추정)

  • Lee, Joo-Suk;Park, Sun-Young;Ryu, Mun-Hyun;Yoo, Seung-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.4
    • /
    • pp.373-381
    • /
    • 2012
  • The information on the economic value of industrial water use is widely demanded in policy analysis area as well as academic research area. Therefore, this study attempts to obtain more accurate economic value of industrial water use using the economic theory. To this end, we conducted a survey of 1,017 manufacturing firms and estimated the economic value of industrial water use based on the concept of value of marginal product (VMP). Moreover, this study tried to estimate the VMP of three industrial water types, river water, precipitated water, and purified water. The results show that the VMPs of river water, precipitated water and purified water are estimated to be 769.24 won/$m^3$, 896.76 won/$m^3$ and 1,861.95 won/$m^3$, respectively. The value for the precipitated water found in this study is not significantly different from that (885.1 won/$m^3$) used in the pre-feasibility test implemented by Korea Development Institute (KDI). These imply that the latter is appropriate for evaluating the economic benefit of supplying industrial water, though it is based on 2003 Industry Survey.

Study on Manufacturing Emulsion Oil Using Biodiesel Feedstock Oil Production By-product (바이오디젤 원료유 생산 부산물을 이용한 유화유 제조 연구)

  • Kim, Deogkeun;Jeon, Sanggoo;Yoon, Sangjun;Park, Soonchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.106.2-106.2
    • /
    • 2010
  • 동식물성 기름과 메탄올의 전이에스테르화 반응에 의해 생산되는 바이오디젤은 환경친화성과 지속가능성이 인정됨에 따라 그 생산량이 급격히 증가하고 있어 대두유, 유채유, 팜유 등의 원료유 부족과 가격 상승, 수급 불안정 등의 문제가 대두되고 있다. 이를 해결하기 위한 방안으로 유리지방산 함량이 높은 저가유지 자원(폐식용유, 폐돈지, 폐우지, soapstock, trapped grease)과 새로운 오일 작물을 이용한 생산 기술 연구가 활발히 진행되고 있다. 본 연구에서는 비활용 해외 열대작물 씨앗에서 착유한 식물성 오일을 정제하여 바이오디젤 원료유를 생산하는 과정에서 발생하는 폐기물(폐유, 폐수)의 경제적 처리 방안으로 유화유 제조 원료(벙커C유, 물)와 유화유 제조 첨가제(무기계, 유기계)로 활용 가능성을 검토하였다. 열대작물 오일의 물성 분석 결과 고형물, 수분, 인지질(phospholipid), 유리지방산(free fatty acid) 함량이 기존 원료유보다 매우 높게 나타났다. 인지질은 바이오디젤 제조 반응후 에스테르와 글리세린의 층분리를 방해하고 유리지방산은 염기촉매와 결합하여 지방산염을 생성해 생산 수율을 감소시킨다. 고형물과 수분 역시 촉매반응에 악영향을 가지나 여과와 감압증발에 의해 쉽게 제거가 가능하다. 유리지방산은 산촉매 에스테르화 반응에 의해 제거가 가능하다. 인지질은 탈검(degumming) 과정을 통해 제거하며 탈검은 수용성 탈검, 산 탈검, 세정 공정으로 구성된다. 착유한 원료유의 고형물을 제거 후 물과 수세하여 수용성 인지질을 수화하여 층 분리해 제거하고 상층의 오일은 추가적인 산 탈검을 수행한다. 그 뒤 세정을 통해 사용된 탈검제인 산과 추가적으로 수화된 인지질을 제거하게 된다. 이러한 3단계의 탈검 과정에서 하층으로 오일과 물이 폐기물로서 배출되며 본 연구에서는 배출 폐기물을 다시 층분리하여 오일층과 물 층으로 구분하여 유화유 제조에 사용되는 벙커C유, 물, 그리고 기존 유기계 및 무기계 유화제의 대체 가능성을 조사하였다. 유화 연료유는 기름과 물을 균일한 분산상으로 혼합한 연료유로 연소시 오일계 성분의 미연분을 감소시켜 연료 효율 제고와 배출가스 성상을 개선하기 위해 개발되어 왔다. 본 발표에서는 다양한 종류의 상용 첨가제 및 바이오디젤 원료유 생산 폐기물을 활용해 유화 연료유를 제조하였으며 각 유화유의 장시간의 상(phase) 안정성을 비교하였다. 바이오 폐기물 중에는 천연 계면활성제(surfactant)인 인지질이 다량 함유되어 있어 기존의 무기계 및 유기계 유화제보다 상 안정성이 우수하게 나타났으며 바이오디젤 원료유 생산 공정의 폐기물인 폐유과 폐수의 활용이 가능한 것으로 나타났다.

  • PDF