• Title/Summary/Keyword: manufacturing energy

Search Result 1,894, Processing Time 0.027 seconds

Optimal Flow Design of High-Efficiency, Cold-Flow, and Large-size Heat Pump Dryer (히트펌프를 이용한 고효율 냉풍 대형 건조기 유동 최적설계)

  • Park, Sang-Jun;Lee, Young-Lim
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.547-552
    • /
    • 2011
  • Drying process, corresponding to a final process in the area of food engineering, requires a lot of heat energy. Thus, the energy efficiency is very important for dryers. Since the energy efficiency of heat pump dryers is much higher compared to that of electric dryers or other types of dryers, most of large-capacity dryers are adopting heat pump. In this study, shapes, positions and number of air-circulating fans, guide vanes, air inlet, outlet and top separator were varied for optimization of the flow of a large-capacity heat pump dryer. In addition, fans were modelled with performance curves and porous media were assumed for foods and heat exchangers. The simulation results were applied to the 12-ton dryer and the velocity distributions were experimentally examined. Finally, uniform drying in time was successfully accomplished through frozen pepper experiment.

Development of Multi-purpose Smart Sensor Using Presence Sensor (재실 감지 센서를 이용한 다용도 스마트 센서 개발)

  • Cha, Joo-Heon;Yong, Heong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.103-109
    • /
    • 2015
  • This paper introduces a multi-purpose smart fusion sensor. Normally, this type of sensor can contribute to energy savings specifically related to lighting and heating/air conditioning systems by detecting individuals in an office building. If a fire occurs, the sensor can provide information regarding the presence and location of residents in the building to a management center. The system consists of four sensors: a thermopile sensor for detecting heat energy, an ultrasonic sensor for measuring the distance of objects from the sensor, a fire detection sensor, and a passive infrared sensor for detecting temperature change. The system has a wireless communication module to provide the management center with control information for lighting and heating/air conditioning systems. We have also demonstrated the usefulness of the proposed system by applying it to a real environment.

Comparative Study of Different Drive-train Driving Performances for the Input Split Type Hybrid Electric Vehicle (입력분기방식 하이브리드 전기자동차의 구동계 구조에 따른 동력 성능 비교 분석)

  • Kim, Jeong-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.69-75
    • /
    • 2017
  • In this study, the performances of five input split type hybrid electric vehicle sub-drivetrains were analyzed. The five sub-drivetrains consist of chain, helical gears and planetary gears. For the analyzing above five sub-drivetrains, the mathematical equations were derived. From the analysis, we found that the sub-drivetrain with chain shows slower acceleration performance and larger energy consumption on the city driving. And, the sub-drivetrain with only helical gear shows smallest energy consumption on the city driving. If the sub-drivetrain can change its gear speed, it shows fastest acceleration performance, but it has largest energy consumption on the city driving due to its additional auxiliary components.

A Study On Prediction Of Three Dimensional Cutting Forces According To The Cutting Conditions (3차원 절삭가공시 절삭력 예측에 관한 연구)

  • 신근하
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1995.03a
    • /
    • pp.152-157
    • /
    • 1995
  • In Turning It is good selection of cutting condition and cutting tools that influence upon the accuracy of dimension manufacturing efficiency and extension of tool life. Among them especially the identification of cutting force due to the change of cutting conditions which exerts a great influence on the turning is very important. In this study the cutting resistance due to the change of cutting conditions was caculated by using the energy method and good agreement in shown between theoritical and experimental results which were tested for the cutting resistance at the cemented carbide cutting tools with workpieces of SM20C and SM 45C.

  • PDF

A Study on Fabrication and Properties of the GaAs/Si Solar Cell Using MOCVD (MOCVD를 이용한 GAs/Si 태양전지의 제작과 특성에 관한 연구)

  • Cha, I.S.;Lee, M.G.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.137-146
    • /
    • 1998
  • In this paper, the current status of manufacturing technologies for GaAs/Si solar cell were revived and provied new MOCVD. In the manufacturing process of GaAs/Si solar cells and an experiment to get the high efficiency GaAs solar cells, we must investigate the optimum growth conditions to get high quality GaAs films on Si substrates by MOCVD. The GaAs on Si substrates has been recognized as a lightweight alternative to pure substrate for space applicaton. Because its density is less the half of GaAs or Ge.So GaAs/Si has twofold weight advantage to GaAs monolithic cell. The theoretical conversion efficiecy limit of tandem GaAs/Si solar cell is 32% under AM 0 and $25^{\circ}C$ condition. It was concluded that the development of cost effective MOCVD technologies shoud be ahead GaAs solar cells for achived move high efficiency III-V solar cells involving tandem structure.

  • PDF

Estimation of the GHG Intensity for Non-Manufacturing Plant : The Example of a University Campus (비 생산플랜트에서 온실가스배출 원단위 산정에 관한 연구 : 대학교 캠퍼스를 중심으로)

  • Park, Hyung-Joon;Rhee, Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.3
    • /
    • pp.46-52
    • /
    • 2012
  • During the past decades, energy and Green House Gas(GHG) emissions has risen as a global issue. This paper is about the energy intensity and the GHG intensity in a university campus using the weighting factor of total occupied time to the members of the university. Through this analysis, we could separately estimate GHG intensity per full-time and part-time members under the situation that the measuring data is not perfect. This analyzing procedure could be applied to other non-manufacturing institutions such as school, hospital, governmental institute, office building etc.

Recent Developments of Polymer Electrolyte Membrane Fuel Cell Design

  • Wonchan Hwang;Yung-Eun Sung
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.120-130
    • /
    • 2023
  • PEMFC has high potential for future development due to its high energy density, eco-friendliness, and high energy efficiency. When it becomes small, light and flexible, it can be competitive as an energy source for portable devices or flexible electronic devices. However, the use of hard and heavy materials for structural rigidity and uniform contact pressure transmission has become an obstacle to reducing the weight and flexibility of PEMFCs. This review intends to provide an example of the application of a new structure and material for lightweight and flexibility. As a lightweight PEMFC, a tubular design is presented and structural advantages through numerical modeling are explained. Manufacturing methods to realize the structural advantages and possibilities of tubular PEMFCs are discussed. In addition, the materials and manufacturing processes used to fabricate lightweight and flexible PEMFCs are described and factors affecting performance are analyzed. Strategies and structural improvements of light and flexible movements are discussed according to the component parts.

Analysis of environmental benefit of wood waste recycling processes (폐목재 자원화 방법 환경편익 분석)

  • Kim, Mi Hyung;Hong, Soo Youl;Phae, Chae Gun;Koo, Ja Kong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.2
    • /
    • pp.15-19
    • /
    • 2012
  • Wood wastes could be renewable resources by recycling as particleboard manufacturing or energy production. Particle board is the most common item of wood waste recycling and energy production from wood wastes has highlighted for energy recovery to reduce greenhouse gas generation in recent years. The aim of this study was to evaluate the environmental benefits of the processes for particle board manufacturing and energy production. The functional unit was one ton of wood wastes and the environmental impact was analyzed by life cycle assessment methodology. The result was that 112kg of carbon dioxide equivalent was produced from particle board manufacturing process and 382kg of carbon dioxide equivalent was produced from combined heat and power generation process. The concept of temporary biomass carbon storage was to applied to this study.

Dual-frequency Capacitively Coupled Plasma-enhanced Chemical Vapor Deposition System for Solar Cell Manufacturing

  • Gwon, Hyeong-Cheol;Won, Im-Hui;Sin, Hyeon-Guk;Rehman, Aman-Ur;Lee, Jae-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.310-311
    • /
    • 2011
  • Dual-frequency (DF) capacitively coupled plasmas (CCP) are used to separately control the mean ion energy and flux at the electrodes [1]. This separate control in capacitively coupled radio frequency discharges is one of the most important issues for various applications of plasma processing. For instance, in the Plasma Enhanced Chemical Vapor Deposition processes such as used for solar cell manufacturing, this separate control is most relevant. It principally allows to increase the ion flux for high deposition rates, while the mean ion energy is kept constant at low values to prevent highly energetic ion bombardment of the substrate to avoid unwanted damage of the surface structure. DF CCP can be analyzed in a fashion similar to single-frequency (SF) driven with effective parameters [2]. It means that DF CCP can be converted into SF CCP with effective parameters such as effective frequency and effective current density. In this study, comparison of DF CCP and its converted effective SF CCP is carried out through particle-in-cell/Monte Carlo (PIC-MCC) simulations. The PIC-MCC simulation shows that DF CCP and its converted effective SF CCP have almost the same plasma characteristics. In DF CCP, the negative resistance arises from the competition of the effective current and the effective frequency [2]. As the high-frequency current increases, the square of the effective frequency increases more than the effective current does. As a result, the effective voltage decreases with the effective current and it leads to an increase of the ion flux and a decrease of the mean ion energy. Because of that, the negative resistance regime can be called the preferable regime for solar cell manufacturing. In this preferable regime, comparison of DF (13.56+100 or 200 MHz) CCP and SF (60 MHz) CCP with the same effective current density is carried out. At the lower effective current density (or at the lower plasma density), the mean ion energy of SF CCP is lower than that of DF CCP. At the higher effective current density (or at the higher plasma density), however, the mean ion energy is lower than that of SF CCP. In this case, using DF CCP is better than SF CCP for solar cell manufacturing processes.

  • PDF

Singular Residual Stresses at Interface of Compound Cylinders

  • Lee, S.S.;Kim, T.H.;Kim, J.G.;Park, K.W.;Hwang, J.K.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.305-310
    • /
    • 1996
  • This paper concerns the cladding residual stresses in a reactor vessel induced during cooling from the manufacturing temperature down to room temperature Finite element results show that very large stress gradients are present at the interface corner and such stress singularity might lead to local yielding or cladding-base metal debonding.

  • PDF