• Title/Summary/Keyword: mannitol

Search Result 540, Processing Time 0.03 seconds

Leuconostoc mesenteroides NRRL B-1149를 이용한 Mannitol 생산

  • Kim, Chang-Yong;Jo, Gap-Su;Ryu, Hwa-Ja;Lee, Gwang-Ok;Lee, Jin-Ha;Kim, Do-Won;Kim, Do-Man
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.177-179
    • /
    • 2002
  • The process for the production of mannitol with fructose (5% to 25%) using Leuconostoc mesenteroides NRRL B-1149 was investigated. Optimization study for mannitol production was carried out in 8 liter batch or fed-batch cultures at $28^{\circ}C$, pH 5.0, without aeration. When 5% fructose was used in a batch culture fermentation, the yield of mannitol was 78% of theoretical. As the concentration of fructose was increased to 10% in a batch culture, the yield was reduced to 59.6% of theoretical. Using a fed-batch fermentation with 10% fructose, the yield was increased to 81.9%. When 15% fructose was used for a fed batch fermentation 5% fructose was initially added and the last 10% fructose was supplied continuously. The final yield of mannitol was 83.71% of theoretical. When 20% fructose was used, the yield was more higher, 89.48%.

  • PDF

Chemical Mutation of Leuconostoc mesenteroides for Improved Mannitol Production: Development of a High-throughput Screening Strategy (Leuconostoc mesenteroides의 화학적 돌연변이를 통한 만니톨 생산능 향상: 고속 대량 선별 기술 개발)

  • Lee, Hyeong Rho;Ahn, Ji Eun;Han, Nam Soo
    • KSBB Journal
    • /
    • v.28 no.3
    • /
    • pp.213-215
    • /
    • 2013
  • A high-throughput screening strategy was developed to simplify the selection process for improved mannitol producing strain after chemical mutagenesis. Ethylmethyl sulfonate (EMS) was used as a chemical mutagen to alter the fructokinase-I gene which is an essential enzyme to metabolize fructose for growth. Leuconostoc mesenteroides treated with EMS were plated on the modified MRS solid medium containing fructose as a sole carbon source. Strains showing inhibited growth were primarily selected to evaluate the mannitol producing ability. By applying this strategy, L. mesenteroides ATCC 8293 M1, L. mesenteroides ATCC 9135 M3 and L. mesenteroides D1 M3 showed improvement in mannitol production.

Physicochemical and sensory characteristics of orange juice added with various levels of mannitol (Mannitol 첨가에 따른 오렌지 주스의 이화학적, 관능적 특성 변화)

  • L. Kim, Hye-Young;Park, Chun-Wuk
    • Journal of the Korean Society of Food Culture
    • /
    • v.15 no.3
    • /
    • pp.195-199
    • /
    • 2000
  • Varied levels of mannitol at 0%, 3%, 6% and 9% were added to the commercial orange juice and physicochemical and sensory characteristics of the juice were investigated. Refractive index of control had $11.3^{\circ}Bx$ and the index was significantly increased to that of the $18.4^{\circ}Bx$ as the addition was increased to the 9% level(p<0.05). The values of pH and the acidity did not show significant differences among varied levels of mannitol added samples. However, sensory characteristics of aroma and sweet flavor were significantly increased as the addition levels were increased showing the values of aroma, from 7.5 to 11.3, and those of sweet flavor from 5.0 to 11.9, respectively (p<0.05). The 9% added level sample had significantly the lowest sour and astringent flavor values of 4.0 and 2.3, respectively.

  • PDF

Molecular Cloning and Gene Expression of Sinorhizobium meliloti Mannitol Dehydrogenase in Escherichia coli, and Its Enzymatic Characterization (Sinorhizobium meliloti 유래 Mannitol Dehydrogenase 유전자의 클로닝 및 대장균 내 발현과 효소특성 규명)

  • Jang, Myoung-Uoon;Park, Jung-Mi;Kim, Min-Jeong;Lee, So-Won;Kang, Jung-Hyun;Kim, Tae-Jip
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.2
    • /
    • pp.153-159
    • /
    • 2013
  • A mannitol dehydrogenase (MDH; EC 1.1.1.67) gene was cloned from the Sinorhizobium meliloti 1021 (KCTC 2353) genome and expressed in Escherichia coli. It was seen to have an open reading frame consisting of 1,485 bp encoding 494 amino acids (about 54 kDa), which shares approximately 35-55% of amino acid sequence identity with some known long-chain dehydrogenase/ reductase family enzymes. The recombinant S. meliloti MDH (SmMDH) showed the highest activity at $40^{\circ}C$, and pH 7.0 (D-fructose reduction) and pH 9.0 (D-mannitol oxidation), respectively. SmMDH could catalyze the oxidative/reductive reactions between D-mannitol and D-fructose in the presence of $NAD^+/NADH$ as a coenzyme, but not with NADP+/NADPH. These results indicate that SmMDH is a typical $NAD^+/NADH$-dependent mannitol dehydrogenase.

Enzymatic Characterization of Salmonella typhimurium Mannitol Dehydrogenase Expressed in Escherichia coli (Salmonella typhimurium에서 유래한 Mannitol Dehydrogenase 유전자의 대장균 내 발현 및 효소특성 규명)

  • Jang, Myoung-Uoon;Park, Jung-Mi;Kim, Min-Jeong;Kang, Jung-Hyun;Lee, So-Won;Kim, Tae-Jip
    • Korean Journal of Microbiology
    • /
    • v.48 no.2
    • /
    • pp.156-162
    • /
    • 2012
  • A mannitol dehydrogenase (StMDH) gene was cloned from Salmonella typhimurium LT2 (KCTC 2421) and overexpressed in Escherichia coli. It has a 1,467 bp open reading frame encoding 488 amino acids with deduced molecular mass of 54 kDa, which shares approximately 36% of amino acid identity with known long-chain dehydrogenase/reductatse (LDR) family enzymes. The recombinant StMDH showed the highest activity at $30^{\circ}C$, and pH 5.0 and 10.0 for D-fructose reduction and D-mannitol oxidation, respectively. On the contrary, it has no activity on glucose, galactose, xylose, and arabinose. StMDH can catalyze the oxidative/reductive reactions between D-fructose and D-mannitol only in the presence of $NAD^+$/NADH as coenzymes. These results indicate that StMDH is a typical $NAD^+$/NADH-dependent mannitol dehydrogenase (E.C. 1.1.1.67).

Effect of carbon sources on somatic embryogenesis and cotyledon number variations in carrot (Daucus carota L.)

  • Young Jin Lee;Kyu Seog Hwang;Pil Son Choi
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.89-95
    • /
    • 2023
  • In order to investigate the effect of carbon sources on somatic embryogenesis and cotyledon number variations in carrot, embryogenic callus were cultured in the medium supplemented with various concentrations of sucroseor glucose, and with combination of 2% sucrose and various concentrations of mannitol or sorbitol. The maximum number of somatic embryos formed per flask (1,555.70) was obtained in the medium supplemented with 2% sucrose rather than glucose alone or a combination of mannitol or sorbitol and 2% sucrose, and the number of somatic embryos was decreased with the increasing of mannitol or sorbitol concentration. The frequencies of somatic embryos with two cotyledons were 35.14% for sucrose, 19.88% for glucose, 32.55% for mannitol + 2% sucrose, and 38.59% for sorbitol + 2% sucrose, respectively, and the frequencies of abnormal somatic embryos having 3 or more cotyledons were 64.86% for sucrose, 80.12% for glucose, 67.44% for mannitol + 2% sucrose, and 61.41% for sorbitol + 2% sucrose, respectively. Particularly, the frequency of somatic embryos with two cotyledons (59.16%) was the highest in the 2% sucrose medium compared to the frequency of abnormal somatic embryogenesis with three or more cotyledons, and the frequency gradually decreased with increasing concentration of glucose, mannitol or sorbitol. According to these results, it was found that the ratio of abnormal somatic embryo was higher than the normal somatic embryo in carrot, and was shown that somatic embryogenesis and the cotyledon number was affected by the concentrations of sucrose, glucose as carbon source, and mannitol and sorbitol as osmotic agents in culture medium.

Optimization of Mannitol Fermentation by Leuconostoc mesenteroides sp. strain JFY (Leuconostoc mesenteroides sp. strain JFY 균주에 의한 만니톨 발효 조건의 최적화)

  • Yoo Sun Kyun;Hur Sang Sun;Song Suckhwan;Kim Kyung Min;Whang Kyung Sook
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.374-381
    • /
    • 2005
  • The production of functional foods providing health benefit is one of the fast growing fields in the food industry. Mannitol as GRAS (generally recognized as safe) is a functional food. Mannitol is about $70\%$ as sweet as sucrose and slowly and incompletely absorbed from the intestine, suppling only about one-half energy value of glucose. Commercially, the mannitol is synthesized by catalytic or electrochemical reduction of glucose. However, as strong demand for natural products increased, biological techniques have been developed for mannitol production. The object of this study was to determine the optimum conditions of mannitol fermentation by Leuconostoc mesenteroides sp. strain JFY isolated from fermented vegetables. The processes parameters such as pH, temperature, yeast extract concentration, and fructose concentration were optimized. The chosen ranges were 4.5 to 7.5 for pH, 22 to $34^{\circ}C$ for temperature, 0.05 to $2.0\%$ for yeast extract. and 5 to 350 g/L for fructose. The mineral medium used consisted of 3.0g $KH_2PO_4,\;0.01g\;FeSO_4{\cdot}H_2O,\;0.01g\;MnSO_4{\cdot}4H_2O,\;0.2g\; MgSO_4{\cdot}7H_2O,\;0.01g\;NaCl,\;and\;0.05g\;CaCl_2$ per 1 liter of deionized water. The optimum values of pH, temperature, yeast extract, and fructose concentration were obtained at about pH 6.5, temperature $28^{\circ}C$, yeast extract $0.5\%$ and fructose 30g/L. At optimum condition, the production of mannitol amounted to 31.6g/l. We hope that these findings are of particular importance for industrial application of mannitol production.

Studies on the Fixation of Acetaldehyde by Freeze Drying (냉동건조방법에 의한 Acetaldehyde 고정에 관한 연구)

  • Lee, Young-Chun;Lee, Kyung-Hae
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.13-16
    • /
    • 1989
  • Attempts were made to fix acetaldehyde on base materials, which were selected from carbohydrates, by freeze drying. More acetaldehyde was fixed, in general, on combined base materials than single base materials, and mannitol+lactose were the best among the combined base materials tested. But the combination of mannitol and maltodextrin appeared to be more economical for the mass production. Loss of acetaldehyde during freeze drying was decreased as the concentration of the combined base material was increased, and it reached minimum at 40% of the base material. As dryer chamber pressure was reduced, loss of acetaldehyde during drying was decreased.

  • PDF

Ageing inhibition of aluminum hydroxide gel (수산화 알루미늄${\cdot}$겔의 노화방지작용)

  • 이계주;유병수
    • YAKHAK HOEJI
    • /
    • v.18 no.1
    • /
    • pp.20-28
    • /
    • 1974
  • Physical studies of ageing inhibition of aluminum hydroxide gel were carried out. Sorbitol, mannitol and fructose were found to be an ageing inhibitor of the aluminum hydroxide gel. IR spectra and DTA curves showed that the ageing products of the gel by sorbitol orl mannitol were monohydrous alumina. This differs from hydrated hydrous alumina of other ageing products. This evidence indicates that sorbitol and mannitol prevent the hydrous alumina from its hydration.

  • PDF

Production of Mannitol Using Leuconostoc mesenteroides NRRL B-1149

  • 김창영;이진하;김병훈;유선권;소은성;조갑수;Donal F. Day;김도만
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.4
    • /
    • pp.254-254
    • /
    • 2002
  • A process for the production of mannitol from fructose (5% to 25%) using Leuconosyoc mesenteroides NRRL B-1149 was investigated. Fermentations were carried out in bat도 of fed-batch fermentations without aeration at 28℃, pH 5.0. When 5% fructose was used in batch culture fermentation, the yield of mannitol was 78% of that expected theoretically. When the fructose concentration was increased to 10%, the yield dropped to 59.6% of the theoretical value. However, in the fed-batch culture, using 10% fructose, the yield was 81.9% of the theoretical value. In a 15% fructose fed-bat도 culture, with 5% fructose being added initially and the other 10% fructose being added as a continuous supply, the final yield was 83.7% of the theoretical yield. When 20% fructose was used in the same manner, the yield was 89.5% of theoretical yield.