DOI QR코드

DOI QR Code

Optimization of Mannitol Fermentation by Leuconostoc mesenteroides sp. strain JFY

Leuconostoc mesenteroides sp. strain JFY 균주에 의한 만니톨 발효 조건의 최적화

  • Yoo Sun Kyun (Department of Oriental Medicine and Food Biotechnology, College of Engineering, Joongbu University) ;
  • Hur Sang Sun (Department of Oriental Medicine and Food Biotechnology, College of Engineering, Joongbu University) ;
  • Song Suckhwan (Department of Environmental Health, College of Engineering, Joongbu University) ;
  • Kim Kyung Min (Institute of Genetic Engineering, Kyungpook National University) ;
  • Whang Kyung Sook (Department of Microbiology, Mokwon University)
  • 유선균 (중부대학교 공과대학 한방건강식품학과) ;
  • 허상선 (중부대학교 공과대학 한방건강식품학과) ;
  • 송석환 (중부대학교 환경보건학과) ;
  • 김경민 (경북대학교 유전공학 연구소) ;
  • 황경숙 (목원대학교 생명산업학부)
  • Published : 2005.06.01

Abstract

The production of functional foods providing health benefit is one of the fast growing fields in the food industry. Mannitol as GRAS (generally recognized as safe) is a functional food. Mannitol is about $70\%$ as sweet as sucrose and slowly and incompletely absorbed from the intestine, suppling only about one-half energy value of glucose. Commercially, the mannitol is synthesized by catalytic or electrochemical reduction of glucose. However, as strong demand for natural products increased, biological techniques have been developed for mannitol production. The object of this study was to determine the optimum conditions of mannitol fermentation by Leuconostoc mesenteroides sp. strain JFY isolated from fermented vegetables. The processes parameters such as pH, temperature, yeast extract concentration, and fructose concentration were optimized. The chosen ranges were 4.5 to 7.5 for pH, 22 to $34^{\circ}C$ for temperature, 0.05 to $2.0\%$ for yeast extract. and 5 to 350 g/L for fructose. The mineral medium used consisted of 3.0g $KH_2PO_4,\;0.01g\;FeSO_4{\cdot}H_2O,\;0.01g\;MnSO_4{\cdot}4H_2O,\;0.2g\; MgSO_4{\cdot}7H_2O,\;0.01g\;NaCl,\;and\;0.05g\;CaCl_2$ per 1 liter of deionized water. The optimum values of pH, temperature, yeast extract, and fructose concentration were obtained at about pH 6.5, temperature $28^{\circ}C$, yeast extract $0.5\%$ and fructose 30g/L. At optimum condition, the production of mannitol amounted to 31.6g/l. We hope that these findings are of particular importance for industrial application of mannitol production.

기능성 식품 첨가물 중에서 당 알코올은 최근 그들의 탁월한 기능성이 알려지면서 수요가 증가하고 있다. 당 알코올 중에서, 만니톨$(C_6H_{14}O_6)$은 식품, 화장품, 제약 산업 등에 매우 광범위하게 이용되고 인체에 독성이 없어 미국 FDA에 의하여 GRAS (Generally Recognized As Safe)로 승인이 되어 이에 대한 수요량이 급격히 증가하는 추세이다. 본 연구는 발효 김치에서 분리 된 L. mesenteroides sp. strain JFY 균주를 이용하여 과당으로부터 만니톨 생산을 위한 최적 생물 전환 조건을 확립하기 위한 것이다. 만니톨 생산을 위한 최적 조건들은 pH 6.5, 배양온도 $28^{\circ}C$, 효모 추출물의 농도 $0.5\%$, 과당의 농도는 $10\%$이었고, 이 조건에서 최대 만니톨생산은 31.5g/l이었다.

Keywords

References

  1. Arcus, A. C. and N.L. Edison. 1956. Polyhydrogenase. The polyol dehydrogenase of Acetobaeter suboxydans and Candida utilis. Biochem. J. 64, 385-393
  2. Berezenko, S. and R.J. Sturgeon. 1991. The enzymatic determination of D-mannitol with mannitol dehydrogenase from Agricus bisporus. Carbohydr. Res. 216, 505-509 https://doi.org/10.1016/0008-6215(92)84185-U
  3. Busse, M., K.K. Kindel and M. Gibbs. 1961. The heterolactic fermentation. J. BioI. Chem. 236, 2850-2853
  4. Edmundowicz, J. M. and J.C. Wriston.. 1963. Mannitol dehydrogenase from Agricus camperstris. J. BioI. Chem. 238, 3539-3541
  5. Ensminger, A. H., M.E. Ensminger, J.E. Konlande and J.R.K. Robson. 1994. Food Nutrition Encyclopedia. 2nd. ed. CRC Press. Boca Raton
  6. Erten, H. 1998. Metabolism of fructose as an electron acceptor by Leuconostoc mesenteroides. Process Biochem. 33, 735-739 https://doi.org/10.1016/S0032-9592(98)00041-7
  7. Grobben, G.J., W.P.G. Sjow, W.H. Wouter, R.A. Weusthuis, M. H. Hoefnagel, H. Jeroen and E. Gerrit. 2001. Spontaneous Formation of a Mannitol-Producing Variant of Leuconostoc mesenteroides Grown in the Presence of Fructose. Appl. Environ. Microbiol. 67, 2867-2870 https://doi.org/10.1128/AEM.67.6.2867-2870.2001
  8. Groleau, D., P. Chevalier and T. H. Yuen. 1995. Production of polyols and ethanols by the osmophilic yeast Zygosaccharomyces Rouxii. Biotechnol. Lett. 17, 315-320 https://doi.org/10.1007/BF01190645
  9. Hasler, C. M. 1966. Functional Foods: the western perspective. Nutr. Rev. 54, 6-10
  10. Kulbe, K. D., U. Schwab and W. Gudernatsch. 1987. Enzymecatalyzed production of mannitol and gluconic Acid, Product Recovery by various procedure. Ann. N. Y. Acad. Sci. 506, 552-568 https://doi.org/10.1111/j.1749-6632.1987.tb23850.x
  11. Maccorkindale, J. and N. J. Edison. 1954. Polyol dehydrogenase. The specificity of rat-liver polyol dehydrogenase. Biochemistry. 57, 518-523
  12. Martinez, G., H. A. Barker and B. J. Horecker. 1963. A specific mannitol dehydrogenase from L. brevis. J. Biol. Chem. 238, 1598-1603
  13. Peterson, W. Hand E. Fred. 1920. Fermentation of fructose by Lactobacillus pentoaceticus, J. Biol. Chem. 41, 431-450
  14. Sakai, Sand K. Yamanaka. 1968. Crystalline D-mannitol: NAD+ oxidoredutase from L. mesenteroides. Biochim. Biophys. Acta, 151, 684-686 https://doi.org/10.1016/0005-2744(68)90017-X
  15. Sakai, S and K. Yarnanaka. 1968. Crystalline D-mannitol: NAD+ oxidoredutase from L. mesenteroides Part II. Substrate and Coenzyme sepecificity. Agr. Biol. Chem. 32, 894-899 https://doi.org/10.1271/bbb1961.32.894
  16. Show, D. R. D. 1956. Polyol dehydrogenase. Galacitol dehydrogenase and d-iditol dehydrogenase. Biochem. J. 64, 394-405
  17. Song, K. H., J. K. Lee, J. Y. Song, S. G. Hong, H. S. Beak, S. Y. Kim and H. H. Hyun. 2002. Production of mannitol by a novel strain of Candida magnoliae. Biotechnology Letters. 24, 9-12 https://doi.org/10.1023/A:1013824309263
  18. Weymarn, N. V., M. Hujanen and M. Leisola. 2002. Production of d-mannitol by heterofermentative lactic acid bacteria. Process Biochem. 37, 1207-1213 https://doi.org/10.1016/S0032-9592(01)00339-9
  19. Wisselink, H.W., R.A. Weusthuis, G. Eggink, J. Hugenholtz and G.J. Grobbern. 2002. Mannitol production by lactic acid bacteria: a review. International Dairy Journal 12,151-161 https://doi.org/10.1016/S0958-6946(01)00153-4
  20. Yamanaka, K. 1975. D-mannitol hydrogenase from Leuconostoc mesenteroides. Methods in Enzymol. 41, 138-142 https://doi.org/10.1016/S0076-6879(75)41034-5
  21. Yang, M. W., C. Y. Lin, H. J. Hung, K. H. Chan, T. Y. Un and S. H. Chan. 1992. Mannitol reduces plasma hydrogen peroxide free radical in patients undergoing coronary artery bypass graft surgery. Ma Tsui Haueh Tsa Chi Anaethesiological Sinca 30, 65-70
  22. Yoo, S. K., D. M. Kim and D. F. Day. 2001. Co-production of dextran and mannitol by Leuconostoc mesenteroides. J. Microbiol. Biotechnol. 11, 880-883
  23. Yun, J. W., S. K. Kang and S. K. Song. 1996. Mannitol accumulation during fermentation of Kimchi. J. Ferment. Bioeng. 81, 279-280 https://doi.org/10.1016/0922-338X(96)82224-0
  24. Yun, J. Wand D. H. Kim. 1998. A comparative study of mannitol production by two lactic acid bacteria. J. Ferment. Bioeng. 85, 203-208 https://doi.org/10.1016/S0922-338X(97)86768-2
  25. Zager, R. A. 1992. Combined mannitol and deferoxamine therapy for myhemoglobinuric renal injury and oxidant tubular stress. J. Clinical Investigation. 90, 711-779 https://doi.org/10.1172/JCI115942

Cited by

  1. Process Optimization of Dextran Production by Leuconostoc sp. strain YSK. Isolated from Fermented Kimchi vol.18, pp.10, 2008, https://doi.org/10.5352/JLS.2008.18.10.1377