• Title/Summary/Keyword: manganese oxide

Search Result 296, Processing Time 0.027 seconds

Precise Deterioration Diagnosis and Restoration Stone Suggestion of Jungdong and Banjukdong Stone Aquariums in Gongju, Korea (공주 중동 및 반죽동 석조의 정밀 손상도 진단과 복원석재 제안)

  • Jo, Young Hoon;Lee, Myeong Seong;Choi, Gi Eun;Lee, Chan Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.44 no.3
    • /
    • pp.92-111
    • /
    • 2011
  • This study focus on the restoration stone selection of break-out part based on material characteristics analysis and the conservational safety diagnosis using various nondestructive techniques for Jungdong and Banjukdong Stone Auariums. As a result, the original rocks of the stone aquariums body are porphyritic granodiorite with magnetite-series having igneous lineation, microcline phenocryst, veinlet and basic xenolith. As a result of the provenance presumption of the host rock, a rock around Gamgokri area in Nonsan City was identified the genetically same rock. Therefore, the rock is appropriate for restoration materials of the break-out part. The deterioration assessment showed that the stone aquariums were highly serious scaling, scale off and blackening. Particularly, the front face of Banjukdong stone aquarium needs reinforcement of structural crack (760mm) caused from igneous lineation of biotite. Blackening contaminants on the stone aquariums surface occurred by combining iron oxide, manganese oxide and clay mineral. Also, major factors of efflorescence contaminants were identified as calcite (Jungdong stone aquariums) and gypsum (Banjukdong stone aquariums). The physical characteristics of stone aquariums appeared that the original and new stone is third (moderately weathered) and second grade (slightly weathered), respectively. This study sets up an integrated conservation system from material analysis to restoration stone selection and conservational safety diagnosis of Jungdong and Banjukdong stone aquariums.

Geology and Mineralization of the Iscaycruz Pb-Zn-Cu Project, Central Peru (페루 중부 이스카이크루즈 연-아연-동 프로젝트의 지질 및 광화작용)

  • Heo, Chul-Ho;Nam, Hyeong-Tae
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.1
    • /
    • pp.57-67
    • /
    • 2021
  • The geology of the Iskaycruz project are mainly composed of sedimentary rocks within Cretaceous basin. The basal part is composed up of dark-gray shale, gray sandstone, and clastic rock of Oyon formation interbedded with coal measures. In the folded zone in the eastern part of the survey area, there is Chimu formation that has medium-grained massive and white quarztite. In terms of geological structure, the Iskaykruz region is located in the folded and overthrust zones of the central part of the Occidental Mountains. Ore body was formed by hydrothermal replacement process and consists of zinc, lead, silver, and copper. Stratabound-type deposits are hosted in limestone of Santa formation. It extends 12 kilometers discontinuously from northern Canaypata to southern Antapampa. Irregular iron oxide and sulfide minerals hosted in Santa and Parihuanca formations are observed. The mineralization observed on the surface consist of primary sulfides consisting of sphalerite with galena and chalcopyrite, and iron and manganese oxide produced from oxidation of primary sulfides. Skarn minerals are accompanied by tremolite, garnet, epidote and quartz.

Ingredients and cytotoxicity of MTA and 3 kinds of Portland cements (MTA와 포틀랜드 시멘트의 구성성분분석과 세포독성에 관한 연구)

  • Chang, Seok-Woo;Yoo, Hyun-Mi;Park, Dong-Sung;Oh, Tae-Seok;Bae, Kwang-Shik
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.4
    • /
    • pp.369-376
    • /
    • 2008
  • The aim of this study was to compare the compositions and cytotoxicity of white ProRoot MTA (white mineral trioxide aggregate) and 3 kinds of Portland cements. The elements, simple oxides and phase compositions of white MTA (WMTA), gray Portland cement (GPC), white Portland cement (WPC) and fast setting cement (FSC) were measured by inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray fluorescence spectrometry (XRF) and X-ray diffractometry (XRD). Agar diffusion test was carried out to evaluate the cytotoxicity of WMTA and 3 kinds of Portland cements. The results showed that WMTA and WPC contained far less magnesium (Mg), iron (Fe), manganese (Mn), and zinc (Zn) than GPC and FSC. FSC contained far more aluminum oxide ($Al_2O_3$) than WMTA, GPC, and WPC. WMTA, GPC, WPC and FSC were composed of main phases. such as tricalcicium silicate ($3CaO{\cdot}SiO_2$), dicalcium silicate ($2CaO{\cdot}SiO_2$), tricalcium aluminate ($3CaO{\cdot}Al_2O_3$), and tetracalcium aluminoferrite ($4CaO{\cdot}Al_2O_3{\cdot}Fe_2O_3$). The significance of the differences in cellular response between WMTA, GPC, WPC and FSC was statistically analyzed by Kruskal-Wallis Exact test with Bonferroni' s correction. The result showed no statistically significant difference (p > 0.05). WMTA, GPC, WPC and FSC showed similar compositions. However there were notable differences in the content of minor elements. such as aluminum (Al), magnesium, iron, manganese, and zinc. These differences might influence the physical properties of cements.

A Study on Optimization of Nitric Acid Leaching and Roasting Process for Selective Lithium Leaching of Spent Batreries Cell Powder (폐 배터리 셀 분말의 선택적 리튬 침출을 위한 질산염화 공정 최적화 연구)

  • Jung, Yeon Jae;Park, Sung Cheol;Kim, Yong Hwan;Yoo, Bong Young;Lee, Man Seung;Son, Seong Ho
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.43-52
    • /
    • 2021
  • In this study, the optimal nitration process for selective lithium leaching from powder of a spent battery cell (LiNixCoyMnzO2, LiCoO2) was studied using Taguchi method. The nitration process is a method of selective lithium leaching that involves converting non-lithium nitric compounds into oxides via nitric acid leaching and roasting. The influence of pretreatment temperature, nitric acid concentration, amount of nitric acid, and roasting temperature were evaluated. The signal-to-noise ratio and analysis of variance of the results were determined using L16(44) orthogonal arrays. The findings indicated that the roasting temperature followed by the nitric acid concentration, pretreatment temperature, and amount of nitric acid used had the greatest impact on the lithium leaching ratio. Following detailed experiments, the optimal conditions were found to be 10 h of pretreatment at 700℃ with 2 ml/g of 10 M nitric acid leaching followed by 10 h of roasting at 275℃. Under these conditions, the overall recovery of lithium exceeded 80%. X-ray diffraction (XRD) analysis of the leaching residue in deionized water after roasting of lithium nitrate and other nitrate compounds was performed. This was done to determine the cause of rapid decrease in lithium leaching rate above a roasting temperature of 400℃. The results confirmed that lithium manganese oxide was formed from lithium nitrate and manganese nitrate at these temperatures, and that it did not leach in deionized water. XRD analysis was also used to confirm the recovery of pure LiNO3 from the solution that was leached during the nitration process. This was carried out by evaporating and concentrating the leached solution through solid-liquid separation.

The Preparation of Non-aqueous Supercapacitors with LiMn2O4/C Composite Positive Electrodes (LiMn2O4/C 복합 양극을 이용한 비수계 슈퍼커패시터의 제조)

  • Kim, Kyoungho;Yoo, Jeeyoung;Kim, Minsoo;Yeu, Taewhan
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.178-182
    • /
    • 2007
  • Non-aqueous supercapacitors by using activated C and $LiMn_2O_4$ as an active material in a positive electrode were prepared and characterized. From the cyclic voltammetry and AC impedance analysis, the capacitive effect by electric double layer of activated carbon and the faradic effect by intercalation/deintercalation of $Li^+$ ion were observed. Increasing the ratio of $LiMn_2O_4$, specific capacitances and energy densities of supercapacitor were increased. At the ratio of 0.86:0.14 ($LiMn_2O_4:C$), the maximum specific capacitance of 17.51 Wh/L and energy density of 23.83 F/cc were obtained, which were more than twice of those for a conventional electric double layer capacitor. Even after 1,000 charge/discharge cycle, the supercapacitor by using the electrode containing 14% of activated carbon and 86% of $LiMn_2O_4$ showed 60% better specific capacitance and energy density than that by using the electrode containing 100% activated carbon.

A Molecular Dynamics Simulation Study of Na- and K-birnessite Interlayer Structures (Na-, K-버네사이트 층간 구조에 대한 분자동역학 시뮬레이션 연구)

  • Park, Sujeong;Kwon, Kideok D.
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.143-152
    • /
    • 2020
  • Birnessite is a layered manganese oxide mineral with ~7 Å of d-spacing. Because of its high cation exchange capacity, birnessite greatly impacts the chemical compositions of ground water and fluids in sediment pores. Understanding the cation exchange mechanisms requires atomistic investigations of the crystal structures and coordination environments of hydrated cations in the interlayer. In this study, we conducted classical molecular dynamics (MD) simulations, an atomistic simulation method of computational mineralogy, for triclinic Na-birnessite and K-birnessite whose chemical formula are from previous experiments. We report our MD simulation results of the crystal structures, coordination environments of Na+ and K+, and the polytypes of birnessite and compare them with available experimental results. The simulation results well reproduced experimental lattice parameters and provided atomic level information for the interlayer cation and water molecule sites that are difficult to distinguish in X-ray experiments. We also report that the polytype of the Mn octahedral sheets is identical between Na- and K-birnessite, but the cation positions differ from each other, demonstrating a correlation between the coordination environment of the interlayer cations and the crystal lattice parameters. This study shows that MD simulations are very promising in elucidating ion exchange reactions of birnessite.

Effect of Ce Addition on Catalytic Activity of Cu/Mn Catalysts for Water Gas Shift Reaction (수성가스전이반응(Water Gas Shift Reaction)을 위한 Ce 첨가에 따른 Cu/Mn 촉매의 활성 연구)

  • PARK, JI HYE;IM, HYO BEEN;HWANG, RA HYUN;BAEK, JEONG HUN;KOO, KEE YOUNG;YI, KWANG BOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Cu/Mn/Ce catalysts for water gas shift (WGS) reaction were synthesized by urea-nitrate combustion method with the fixed molar ratio of Cu/Mn as 1:4 and 1:1 with the doping concentration of Ce from 0.3 to 0.8 mol%. The prepared catalysts were characterized with SEM, BET, XRD, XPS, $H_2$-TPR, $CO_2$ TPD, $N_2O$ chemisorption analysis. The catalytic activity tests were carried out at a GHSV of $28,000h^{-1}$ and a temperature range of 200 to $400^{\circ}C$. The Cu/Mn(CM) catalysts formed Cu-Mn mixed oxide of spinel structure ($Cu_{1.5}Mn_{1.5}O_4$) and manganese oxides ($MnO_x$). However, when a small amount of Ce was doped, the growth of $Cu_{1.5}Mn_{1.5}O_4$ was inhibited and the degree of Cu dispersion were increased. Also, the doping of Ce on the CM catalyst reduced the reduction temperature and the base site to induce the active site of the catalyst to be exposed on the catalyst surface. From the XPS analysis, it was confirmed that maintaining the oxidation state of Cu appropriately was a main factor in the WGS reaction. Consequently, Ce as support and dopant in the water gas shift reaction catalysts exhibited the enhanced catalytic activities on CM catalysts. We found that proper amount of Ce by preparing catalysts with different Cu/Mn ratios.

Removal of Ethylene Over KMnO4/Silica-alumina: Effect of Synthesis Methods and Reaction Temperatures (KMnO4/실리카-알루미나 상에서 에틸렌 제거: 합성 방법과 반응온도의 영향)

  • Cho, Min-Whee;Yoon, Songhun;Park, Yong-Ki;Choi, Won Choon;Kim, Hee Young;Park, Seungkyu;Lee, Chul Wee
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.407-410
    • /
    • 2009
  • 18~19 wt% $KMnO_4$/$SiO_2-Al_2O_3$ with Si/Al = 1/5 and 1/10, and 20 wt% $KMnO_4$/$Al_2O_3$ were prepared by solvent evaporation method. Catalytic activity of ethylene abatement over those samples were evaluated and compared under the conditions of GHSV $1125h^{-1}$, ethylene gas (ethylene 0.2%, air 99.8%, relative humidity 50%) at 30, 40, 60 and $120^{\circ}C$ using a fixed-bed reactor. $KMnO_4$/$SiO_2-Al_2O_3$ was showed better performance than $KMnO_4$/$Al_2O_3$ by 170~210% at 30, $40^{\circ}C$, and by 60% at 60, $150^{\circ}C$, respectively.

Transformation of Endocrine Disrupting Chemicals (EDCs) by Manganese(IV) Oxide (망간산화물을 이용한 내분비계장애물질의 변환에 관한 연구)

  • Lee, Seung-Hwan;Choi, Yong-Ju;Chung, Jae-Shik;Nam, Taek-Woo;Kim, Young-Jin;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.1
    • /
    • pp.44-50
    • /
    • 2009
  • The occurrence of endocrine disrupting compounds (EDCs), chemicals that interfere with human hormone system, are increasing in the freshwater, waste water and subsurface as well. In this study, we determined the reactivity of three EDCs in the presence of birnessite. In aqueous phase, bisphenol A, 2,4-dichlorophenol and 17${\beta}$-estradiol, which possesses phenoxy-OH, were very rapidly transformed by birnessite: up to 99% of initial concentrations (50 mg/L for bisphenol A, 100mg/L for 2,4-dichlorophenol, and 1.5mg/L for 17${\beta}$-estradiol) were destroyed within 60 minutes. Especially, bisphenol A was the most reactive chemical, disappearing by 99% in a few minutes. The reaction occurred on the surface of birnessite, showing a linear increase of first-order kinetic constants with the increase of the surface area of birnessite. In soil slurry phase, the reactivity of birnessiteto EDCs was faster than in aqueous phase probably due to the cross coupling reaction of phenoxy radicals with soil organic matter. Considering the rapid transformation of the EDCs in the both phases, this oxidative cross coupling reaction mediated by birnessite would be an effective solution for the remediation of EDCs in environmental media, especially in soil.

As(III) Oxidation and Phenol Adsorption by the Activated Carbon Impregnated with Mn Oxide (망간산화물이 첨착된 활성탄에 의한 페놀흡착 및 비소(III) 산화)

  • Yu, Mok-Ryun;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.4
    • /
    • pp.423-429
    • /
    • 2008
  • Application of manganese-impregnated activated carbon(Mn-AC) in the treatment of synthetic wastewater containing both organic and inorganic contaminants was investigated. Phenol and As(III) was used as representative organic and inorganic contaminants, respectively. When the stability of Mn-AC at acidic condition was evaluated with variation of solution pH ranging from 2 to 4, Mn-AC was unstable below pH 3, while negligible dissolution of Mn was observed above pH 4. This stability test suggests a plausible applicability of Mn-AC in the treatment of wastewater above pH 4. Compared to AC-alone, the adsorption rates of phenol as well as adsorbed amounts of phenol by Mn-AC were slightly decreased due to the decrease of the surface area by impregnation. The maximum adsorbed amount of phenol by Mn-AC was corresponds to 75% of that by AC-alone from the adsorption isotherm study. The oxidation efficiency of As(III) by Mn-AC was greater than that by AC-alone at lower pHs while reverse trend was observed as pH increased above 7. From this work, it was found that Mn-AC could be used in the simultaneous treatment of both phenol and As(III).