DOI QR코드

DOI QR Code

Ingredients and cytotoxicity of MTA and 3 kinds of Portland cements

MTA와 포틀랜드 시멘트의 구성성분분석과 세포독성에 관한 연구

  • Chang, Seok-Woo (Department of Conservative Dentistry, The Institute of Oral Health Science, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Yoo, Hyun-Mi (Department of Conservative Dentistry, The Institute of Oral Health Science, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Park, Dong-Sung (Department of Conservative Dentistry, The Institute of Oral Health Science, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Oh, Tae-Seok (Department of Conservative Dentistry, The Institute of Oral Health Science, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Bae, Kwang-Shik (Department of Conservative Dentistry, School of Dentistry, Seoul National University)
  • 장석우 (성균관대학교 의과대학 삼성서울병원 치과보존과) ;
  • 유현미 (성균관대학교 의과대학 삼성서울병원 치과보존과) ;
  • 박동성 (성균관대학교 의과대학 삼성서울병원 치과보존과) ;
  • 오태석 (성균관대학교 의과대학 삼성서울병원 치과보존과) ;
  • 배광식 (서울대학교 치의학대학원 치과보존학교실)
  • Published : 2008.07.31

Abstract

The aim of this study was to compare the compositions and cytotoxicity of white ProRoot MTA (white mineral trioxide aggregate) and 3 kinds of Portland cements. The elements, simple oxides and phase compositions of white MTA (WMTA), gray Portland cement (GPC), white Portland cement (WPC) and fast setting cement (FSC) were measured by inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray fluorescence spectrometry (XRF) and X-ray diffractometry (XRD). Agar diffusion test was carried out to evaluate the cytotoxicity of WMTA and 3 kinds of Portland cements. The results showed that WMTA and WPC contained far less magnesium (Mg), iron (Fe), manganese (Mn), and zinc (Zn) than GPC and FSC. FSC contained far more aluminum oxide ($Al_2O_3$) than WMTA, GPC, and WPC. WMTA, GPC, WPC and FSC were composed of main phases. such as tricalcicium silicate ($3CaO{\cdot}SiO_2$), dicalcium silicate ($2CaO{\cdot}SiO_2$), tricalcium aluminate ($3CaO{\cdot}Al_2O_3$), and tetracalcium aluminoferrite ($4CaO{\cdot}Al_2O_3{\cdot}Fe_2O_3$). The significance of the differences in cellular response between WMTA, GPC, WPC and FSC was statistically analyzed by Kruskal-Wallis Exact test with Bonferroni' s correction. The result showed no statistically significant difference (p > 0.05). WMTA, GPC, WPC and FSC showed similar compositions. However there were notable differences in the content of minor elements. such as aluminum (Al), magnesium, iron, manganese, and zinc. These differences might influence the physical properties of cements.

이 연구의 목적은 3 종의 포틀랜드 시멘트 (포틀랜드 시멘트, 백색 포틀랜드 시멘트, 초속경 시멘트)와 white MTA의 성분 및 세포독성을 비교하는 것이다. 성분비교를 위해서 X선 회절기 (XRD), X선 형광분석기 (XRF), 유도결합플라즈마 원자방출분광 분석기 (ICP-AES)를 사용하였으며, 세포독성비교를 위해서는 우무확산법 (agar diffusion test)을 사용하였다. 분석 결과, white MTA와 백색 포틀랜드 시멘트는 포틀랜드 시멘트나 초속경 시멘트에 비해 적은 양의 마그네슘 (mg), 철 (Fe), 아연 (Zn), 그리고 망간 (Mn)을 함유하고 있었다. 또한 초속경 시멘트는 다른 시멘트 및 white MTA에 비해 많은 산화 알루미늄 ($Al_2O_3$)을 함유하고 있었다. MTA와 포틀랜드 시멘트의 주된 성분은 tricalcicium silicate ($3CaO{\cdot}SiO_2$), dicalcium Silicate ($2CaO{\cdot}SiO_2$), tricalcium aluminate ($3CaO{\cdot}Al_2O_3$), 그리고 tetracalcium aluminoferrite (4CaO{\cdot}Al_2O_3{\cdot}Fe_2O_3)등이었다 세포독성 실험결과를 Kruskal-Wallis Exact test와 Bonferroni 사후 검정법을 사용하여 분석 한 결과 white MTA와 3 종의 포틀랜드 시멘트 군 사이에서 통계적으로 유의성 있는 차이를 보이지 않았다 (p > 0.05). White MTA와 3종의 포틀랜드 시멘트의 주성분은 유사하였으나 알루미늄 (Al), 마그네슘 (mg), 철 (Fe), 아연 (Zn), 그리고 망간 (Mn) 등의 함량에서는 차이를 보였으며 이러한 차이들은 물리적 성질에 영향을 미칠 것으로 보인다.

Keywords

References

  1. Torabinejad M, Ford TR, Abedi HR, Kariyawasam SP, Tang HM. Tissue reaction to implanted root-end filling materials in the tibia and mandible of guinea pigs. J Endod 24:468-71, 1998 https://doi.org/10.1016/S0099-2399(98)80048-4
  2. Koh ET, Torabinejad M, Pitt Ford TR, Brady K, McDonald F. Mineral trioxide aggregate stimulates a biological response in human osteoblasts. J Biomed Mater Res 37:432-9, 1997 https://doi.org/10.1002/(SICI)1097-4636(19971205)37:3<432::AID-JBM14>3.0.CO;2-D
  3. Al-Hezaimi K, Al-Shalan TA, Naghshbandi J, Oglesby S, Simon JH, Rotstein I. Antibacterial effect of two mineral trioxide aggregate (MTA) preparations against Enterococcus faecalis and Streptococcus sanguis in vitro. J Endod 32:1053-6, 2006 https://doi.org/10.1016/j.joen.2006.06.004
  4. Torabinejad M, Watson TF, Pitt Ford TR. Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J Endod 19:591-5, 1993 https://doi.org/10.1016/S0099-2399(06)80271-2
  5. Torabinejad M, Rastegar AF, Kettering JD, Pitt Ford TR. Bacterial leakage of mineral trioxide aggregate as a root-end filling material. J Endod 21:109-12, 1995 https://doi.org/10.1016/S0099-2399(06)80433-4
  6. Torabinejad M, Smith PW, Kettering JD, Pitt Ford TR. Comparative investigation of marginal adaptation of mineral trioxide aggregate and other commonly used root-end filling materials. J Endod 21:295-9, 1995 https://doi.org/10.1016/S0099-2399(06)81004-6
  7. Torabinejad M, Chivian N. Clinical applications of mineral trioxide aggregate. J Endod 25:197-205, 1999 https://doi.org/10.1016/S0099-2399(99)80142-3
  8. Lee SJ, Monsef M, Torabinejad M. Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. J Endod 19:541-4, 1993 https://doi.org/10.1016/S0099-2399(06)81282-3
  9. Pitt Ford TR, Torabinejad M, McKendry DJ, Hong CU, Kariyawasam SP. Use of mineral trioxide aggregate for repair of furcal perforations. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 79:756-63, 1995 https://doi.org/10.1016/S1079-2104(05)80313-0
  10. Tselnik M, Baumgartner JC, Marshall JG. Bacterial leakage with mineral trioxide aggregate or a resinmodified glass ionomer used as a coronal barrier. J Endod 30:782-4, 2004 https://doi.org/10.1097/00004770-200411000-00008
  11. Song JS, Mante FK, Romanow WJ, Kim S. Chemical analysis of powder and set forms of Portland cement, gray ProRoot MTA, white ProRoot MTA, and gray MTA-Angelus. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102:809-15, 2006 https://doi.org/10.1016/j.tripleo.2005.11.034
  12. Islam I, Chng HK, Yap AU. X-ray diffraction analysis of mineral trioxide aggregate and Portland cement. Int Endod J 39:220-5, 2006 https://doi.org/10.1111/j.1365-2591.2006.01077.x
  13. Camilleri J, Montesin FE, Di Silvio L, Pitt Ford TR. The chemical constitution and biocompatibility of accelerated Portland cement for endodontic use. Int Endod J 38:834-42, 2005 https://doi.org/10.1111/j.1365-2591.2005.01028.x
  14. De Deus G, Ximenes R, Gurgel-Filho ED, Plotkowski MC, Coutinho-Filho T. Cytotoxicity of MTA and Portland cement on human ECV 304 endothelial cells. Int Endod J 38:604-9, 2005 https://doi.org/10.1111/j.1365-2591.2005.00987.x
  15. Ribeiro DA, Duarte MA, Matsumoto MA, Marques ME, Salvadori DM. Biocompatibility in vitro tests of mineral trioxide aggregate and regular and white Portland cements. J Endod 31:605-7, 2005 https://doi.org/10.1097/01.don.0000153842.06657.e2
  16. de Morais CA, Bernardineli N, Garcia RB, Duarte MA, Guerisoli DM. Evaluation of tissue response to MTA and Portland cement with iodoform. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102:417-21, 2006 https://doi.org/10.1016/j.tripleo.2005.09.028
  17. Santos AD, Moraes JC, Araujo EB, Yukimitu K, Valerio Filho WV. Physico-chemical properties of MTA and a novel experimental cement. Int Endod J 38:443-7, 2005 https://doi.org/10.1111/j.1365-2591.2005.00963.x
  18. Islam I, Chng HK, Yap AU. Comparison of the physical and mechanical properties of MTA and portland cement. J Endod 32:193-7, 2006 https://doi.org/10.1016/j.joen.2005.10.043
  19. De-Deus G, Petruccelli V, Gurgel-Filho E, Coutinho- Filho T. MTA versus Portland cement as repair material for furcal perforations: a laboratory study using a polymicrobial leakage model. Int Endod J 39:293-8, 2006 https://doi.org/10.1111/j.1365-2591.2006.01096.x
  20. Dammaschke T, Gerth HU, Zuchner H, Schafer E. Chemical and physical surface and bulk material characterization of white ProRoot MTA and two Portland cements. Dent Mater 21:731-8, 2005 https://doi.org/10.1016/j.dental.2005.01.019
  21. Torabinejad M, Hong CU, McDonald F, Pitt Ford TR. Physical and chemical properties of a new root-end filling material. J Endod 21:349-53, 1995 https://doi.org/10.1016/S0099-2399(06)80967-2
  22. Antunes Bortoluzzi E, Juarez Broon N, Antonio Hungaro Duarte M, de Oliveira Demarchi AC, Monteiro Bramante C. The use of a setting accelerator and its effect on pH and calcium ion release of mineral trioxide aggregate and white Portland cement. J Endod 32:1194-7, 2006 https://doi.org/10.1016/j.joen.2006.07.018
  23. Bortoluzzi EA, Broon NJ, Bramante CM, Garcia RB, de Moraes IG, Bernardineli N. Sealing ability of MTA and radiopaque Portland cement with or without calcium chloride for root-end filling. J Endod 32:897-900, 2006 https://doi.org/10.1016/j.joen.2006.04.006
  24. Tay FR, Pashley DH, Rueggeberg FA, Loushine RJ, Weller RN. Calcium Phosphate Phase Transformation Produced by the Interaction of the Portland Cement Component of White Mineral Trioxide Aggregate with a Phosphate-containing Fluid. J Endod 33:1347-51, 2007 https://doi.org/10.1016/j.joen.2007.07.008
  25. Camilleri J, Montesin FE, Brady K, Sweeney R, Curtis RV, Ford TR. The constitution of mineral trioxide aggregate. Dent Mater 21:297-303, 2005 https://doi.org/10.1016/j.dental.2004.05.010
  26. Camilleri J, Montesin FE, Curtis RV, Ford TR. Characterization of Portland cement for use as a dental restorative material. Dent Mater 22:569-75, 2006 https://doi.org/10.1016/j.dental.2005.06.005
  27. Coomaraswamy KS, Lumley PJ, Hofmann MP. Effect of bismuth oxide radioopacifier content on the material properties of an endodontic Portland cement-based (MTA-like) system. J Endod 33:295-8, 2007 https://doi.org/10.1016/j.joen.2006.11.018
  28. Camilleri J. Hydration mechanisms of mineral trioxide aggregate. Int Endod J 40:462-70, 2007 https://doi.org/10.1111/j.1365-2591.2007.01248.x
  29. Min KS, Kim HI, Park HJ, Pi SH, Hong CU, Kim EC. Human pulp cells response to Portland cement in vitro. J Endod 33:163-6, 2007 https://doi.org/10.1016/j.joen.2006.07.022

Cited by

  1. Comparison of biocompatibility of four root perforation repair materials vol.34, pp.3, 2009, https://doi.org/10.5395/JKACD.2009.34.3.192
  2. Effects of condensation techniques and canal sizes on the microleakage of orthograde MTA apical plug in simulated canals vol.34, pp.3, 2009, https://doi.org/10.5395/JKACD.2009.34.3.208
  3. A bioactivity study of Portland cement mixed with β-glycerophosphosphate on human pulp cell vol.34, pp.5, 2009, https://doi.org/10.5395/JKACD.2009.34.5.415
  4. Physical and chemical properties of experimental mixture of mineral trioxide aggregate and glass ionomer cement vol.35, pp.5, 2010, https://doi.org/10.5395/JKACD.2010.35.5.344
  5. Physical properties of novel composite using Portland cement for retro-filling material vol.35, pp.6, 2010, https://doi.org/10.5395/JKACD.2010.35.6.445
  6. Biocompatibility of bioaggregate cement on human pulp and periodontal ligament (PDL) derived cells vol.35, pp.6, 2010, https://doi.org/10.5395/JKACD.2010.35.6.473
  7. Chemical analysis and biological properties of two different formulations of white portland cements vol.38, pp.4, 2015, https://doi.org/10.1002/sca.21270
  8. Chemical characteristics of mineral trioxide aggregate and its hydration reaction vol.37, pp.4, 2012, https://doi.org/10.5395/rde.2012.37.4.188
  9. Conservative approach of a symptomatic carious immature permanent tooth using a tricalcium silicate cement (Biodentine): a case report vol.38, pp.4, 2013, https://doi.org/10.5395/rde.2013.38.4.258
  10. cytotoxicity of four calcium silicate-based endodontic cements on human monocytes, a colorimetric MTT assay vol.39, pp.3, 2014, https://doi.org/10.5395/rde.2014.39.3.149