• 제목/요약/키워드: manganese nodules

검색결과 72건 처리시간 0.026초

심해저 망간단괴를 흡착제로 한 니켈 함유 폐수 처리에 대한 기초 연구 (Adsorption Features of Nickel Ion on Deep Sea Manganese Nodule)

  • 백미화;신명숙;김동수;정선희;박경호
    • 한국물환경학회지
    • /
    • 제22권1호
    • /
    • pp.116-121
    • /
    • 2006
  • Fundamental investigations have been carried out to find the applicability of manganese nodule as an adsorbent of nickel ion with an intention that nickel can be secured in manganese nodule along with the treatment of wastewater. The average content of manganese in nodules which used in the experiments was about 27%. The content of nickel in manganese nodules was observed to increase up to 4 times higher with comparison to its original value after adsorption. When the initial concentration of nickel ion in artificial wastewater was lower than 500 mg/L, its adsorbed amount on manganese nodule was shown to increase continuously. However, no more than about 82 mg/L of nickel was attained at higher initial nickel ion concentration than 500 mg/L. The adsorption of nickel ion was increased with temperature under experimental conditions and as the size of manganese nodule particles became smaller more nickel ion was adsorbed on adsorbent. Regarding the effect of pH, the adsorption of nickel ion was more hindered as the solution became acidic. Adsorption behavior of nickel ion on manganese nodule was found to follow the Freundlich model well and kinetic analysis showed that the adsorption reaction of nickel ion was second order. Thermodynamic parameters for the nickel ion adsorption were estimated on the basis of thermodynamic equations and they were in good agreement with experimental results.

KODOS 망간단괴의 SiO2-CaO-MnO 상관관계와 분포양상 (SiO2-CaO-MnO Correlations and Distributions of KODOS Manganese Nodules)

  • 장세원;최헌수;강중석;공기수;이성록;장정해
    • Ocean and Polar Research
    • /
    • 제26권2호
    • /
    • pp.199-205
    • /
    • 2004
  • $SiO_2$ and CaO are added to decrease the smelting temperature in the reduction-smelting method for manganese nodule processing. These elements are components of the manganese nodules and might be very important controlling factors in the processing due to the locally variable content. The 707 chemical data of manganese nodules acquired from 1994 to 2001 in KODOS(Korea Deep Ocean Survey) area were used for the hierarchical cluster analysis. The chemical data were classified by the morphological types, and the averages of the chemical data for each station were classified by the facies groups and the localities. All data are plotted on the $SiO_2-CaO-MnO$ phase diagram at $1773^{\circ}K$ to compare with the best compositional area in the nodule smelting. Variations and distributions of $SiO_2$ and CaO in KODOS nodules were also reviewed. The mineral phases assigned by the cluster analysis are CFA(Carbonate Fluorapatite), Fe-oxide, Al-silicate, and Mn-oxide. MnO contents are generally higher than $SiO_2$ contents in most of the morphological types except for the Is- and It-type. The Dt- and Tt-type show wider range and the E-types show high anomaly in their CaO contents. The stations which belong to facies group A and B show generally higher MnO contents than $SiO_2$ contents, however, the stations of facies group C and D show wide range in their MnO and $SiO_2$ contents. It seems to be very important to control the $SiO_2$ contents in the processing because of the wide range in the northern area. The additions of approximately 10 wt.% CaO and 10 wt.% $SiO_2$ are recommended for the northern area, whereas, the additions of approximately 10 wt.% CaO and 20 wt.% $SiO_2$ are recommended for the southern area.

적도 북동 태평양, 클라리온-클리퍼톤 균열대에서 산출되는 망간단괴내의 자생 필립사이트 (Authigenic Phillipsite in Deep-sea Manganese Nodules from the Clarion-Clipperton Fracture Zones, NE Equatorial Pacific)

  • 이찬희;이성록
    • 자원환경지질
    • /
    • 제29권4호
    • /
    • pp.421-428
    • /
    • 1996
  • 망간단괴내에 자생하는 필립사이트는 단괴의 핵을 이루는 풍화된 화산암편과 고화된 해저퇴적물 또는 단괴를 이루는 망간광물들의 층간에서 산출된다. 이 광물은 주로 화산성 유리질 석기들의 가상조직을 보이고 있으며, 연한 노란색을 갖는 등립질의 판상으로 산출된다. 필립사이트 입자들은 자형의 삼각능, 사각기둥 또는 도변상을 가지며 크기는 길이 $2{\sim}20{\mu}m$, 두께 $2{\sim}5{\mu}m$정도이다. 이 광물의 화학조성은 $({Ca_{0.1}Mg_{0.3}Na_{1.1}K_{1.5}})_3{(Fe_{0.3}Al_{4.2}Si_{11.8})O_{32}{\cdot}10H_2O}$이며, $Si/(Al+Fe^{+3})=2.37-2.78$, Na/K=0.59-0.81 로서 Si와 알카리의 함량이 아주 높다. 결정구조는 단사정계($P2_l/m$) 속하며 $a=10.005{\AA}$, $b=14.129{\AA}$, $c=8.686{\AA}$, ${\beta}=124.35^{\circ}$ 이고 $V=1013.6{\AA}^3$ 이다. 심해저 환경으로 보아 망간단괴에서 산출되는 필립사이트는 보통 $10^{\circ}C$ 이하의 온도, 0.7 kb 정도의 압력, pH 8 정도의 조건에서 자생하는 것으로 추정된다.

  • PDF

동시베리아해 대륙붕에서 산출되는 망가니즈단괴의 수심에 따른 형태학적·지화학적 특성 변화 (Variations in Morphological and Geochemical Characteristics in Manganese Nodules from the East Siberian Arctic Shelf with Varying Water Depths)

  • 구효진;조현구;이상미;임기택;김효임
    • 자원환경지질
    • /
    • 제56권1호
    • /
    • pp.1-11
    • /
    • 2023
  • 이번 연구에서는 2021년 ARA12B 탐사를 통해 동시베리아해 대륙붕의 서로 다른 수심을 갖는 2개의 정점에서 수집한 망가니즈단괴 440개[ARA12B-St52 (150 m, n = 239), ARA12B-St58i (73 m, n = 201)]에 대하여 형태학적·지화학적 분석을 수행하고, 수심에 따른 단괴의 특성 변화를 고찰하였다. 단괴의 크기는 두 정점 모두에서 3 cm 이상의 크기가 일반적이다. 그러나 단괴의 외형적 특징은 수심에 따라 크게 차이가 있다. 수심 150 m에서 획득된 단괴의 일반적인 형태는 거친 표면조직을 가지는 갈색-흑색의 판상형, 원통형 및 타원체형이다. 반면, 수심 73 m에서 회수된 단괴들은 매끄러운 표면을 가지는 노랑-갈색의 판상형 단괴가 대부분을 차지한다. 또한 단괴의 내부조직, 공극률 및 구성원소와 관련이 있는 크기와 무게 간 추세선의 기울기는 150 m의 단괴의 경우 약 1.60, 83 m 단괴는 약 0.84로 큰 차이가 있음이 확인되었다. 이는 단괴의 내부조직 및 화학조성에 차이로부터 기인한다. 단괴의 내부조직과 화학조성 분석 결과, 수심 150 m의 단괴들은 핵을 중심으로 두꺼운 Mn층과 얇은 Fe층들로 이루어진 반면, 83 m의 단괴들은 핵을 중심으로 얇은 Mn 및 Fe층이 교호하며 성장한다. 마이크로 X선 형광분석(µ-XRF)을 통해 단괴의 절개면에서 분석된 평균 화학조성은 150 m 단괴의 경우 Mn 40.6 wt%, Fe 5.2 wt%, Mn/Fe 비 7.9이며, 83 m 단괴의 경우 Mn 10.3 wt%, Fe 19.0 wt%, Mn/Fe 비 0.6이다. 타 해역 단괴들의 화학조성과 비교한 결과 수심 150 m에서 회수된 단괴의 조성은 태평양의 페루 분지의 단괴들과 유사한 반면, 83 m에서 획득된 단괴의 조성은 태평양의 쿡 섬 또는 발트해의 단괴들과 유사하다. 관찰된 단괴들의 형태학적·지화학적 특성은 두 정점에서 뚜렷한 차이를 나타내며, 이는 북극해 대륙붕의 수심에 따라 단괴의 형성 당시의 환경적 조건에 명확한 차이가 있음을 지시한다.

심해저 망간각 개발의 경제성 평가 (A Technical and Economic Evaluation of Cobalt-rich Manganese Crusts)

  • 박세헌;양희철
    • Ocean and Polar Research
    • /
    • 제31권2호
    • /
    • pp.167-176
    • /
    • 2009
  • Cobalt-rich manganese crusts on seamounts have received an increasing amount of attention as future resources for Co, Ni, Cu, and Mn. A dearth of detailed information regarding the relevant distribution characteristics, mining technologies, and ore processing technologies, however, has precluded potential evaluations of the technical and economic advantages of these crusts. In the past 4 years, Korea has undertaken a survey of the cobalt-rich manganese crusts in and around the Magellan Seamount and Mid-Pacific Mountains. This paper introduces the preliminary feasibility study of the distribution features and R&D results centered around the development of the cobalt-rich manganese crusts. The evaluation model was developed by modifying the model for the manganese nodules. In addition to considering the geological and geophysical differences between the manganese nodules and the cobalt-rich manganese crusts, an ore dressing subsystem was installed in the model. The mining subsystem is composed of a self-propelled collector--a pipeline with submersible hydraulic pumps for crust lifting. The smelting and chlorine leach method was selected for metallurgical processing. The production scales were established at 2,500t/y of cobalt metal. The production of three metals--cobalt, nickel, and copper--was considered in terms of metallurgical processing. The economic feasibility analyses demonstrated that the payback period was 11.4 years, the NPV was 36M$, and the IRR was 9.6% with the economic factors in the case of a cobalt price of US$ 25/lb. It was also demonstrated in this study that the payback period was 8.6 years, the NPV was 154M$, and the IRR was 14.0% in the case of a cobalt price of US$ 30/lb. This indicates that the approach under consideration appears to offer greater potential given the predicted metal prices.

북동 태평양 KR1 광구의 망간단괴 산출특성 (Control of Manganese Nodule Characteristics by Volcanic Activity in the NE Equatorial Pacific)

  • 김원년;양승진;지상범;이현복
    • Ocean and Polar Research
    • /
    • 제36권4호
    • /
    • pp.373-381
    • /
    • 2014
  • Korea contract Mn-nodule field in the NE equatorial Pacific is composed of seven sectors with average water depths of 4,513-5,025 m. Of the various factors controlling the properties of Mn-nodule, it seems that water depth is likely connected to the chemical composition and occurrence of nodules. To test whether such an assumption held in each sector, we reviewed previous research data accumulated since 1994 for one of the northern sectors (hereafter KR1) where there are stark contrasts in water depth. High-resolution seabed mapping clearly separates a northern part (KR1N) from a deeper southern part (KR1S), cutting across in the middle of the KR1. In addition, significant volcanic activities forming numerous seamounts are distinctive especially in KR1N. In terms of nodule occurrence, manganese nodules in KR1S are comparatively larger (2-4 cm) with a discoidal shape, while those in KR1N are generally small (<2 cm) with poly-lobate and irregular shapes. Nodules in KR1N also have lower Co, Cu, Mn and Ni, and higher Fe contents. The spatial separation in nodule characteristics might be caused by volcanic activities in KR1N rather than water depth contrast. During the formation of the seamounts in KR1N, rock fragments and volcanic ashes as new nuclei of the nodules would have been continuously generated. As a result, the nodules could not grow larger than 2 cm and display the shapes of a newbie (i.e., irregular and poly-lobate shapes). Moreover, significant Fe supply from volcanic activities probably decreases the Mn/Fe ratio, which may lead to the KR1 nodules being misinterpreted as a hydrogenic in origin compared to other sectors where a high Mn/Fe ratio is present.

프랙탈모델을 이용한 심해저 망간단괴의 매장량평가 (Reserve Evaluation of Deep-Sea Manganese Nodules Using Fractal Model)

  • 윤치호;권광수;양승진
    • 자원환경지질
    • /
    • 제28권2호
    • /
    • pp.155-164
    • /
    • 1995
  • The kriging model, one of the geostatistical models, has been used to evaluate the deep-sea manganese nodule deposits until now. The distribution of the manganese nodule deposits estimated by the model shows the smooth surface as well as much difference from the actual distribution. Subsequently, it estimates the deposit distribution roughly in terms of the limited data of surveyed zone. Therefore, this paper presents the interpretation methodology of the deep-sea manganese nodule deposit distribution by using the fractal model to overcome the problems caused by the geostatistical model. Also, the manganese nodule distributions are interpreted by using the manganese nodule data sampled in the GH82-4 zone, west longitude $165^{\circ}40^{\prime}-169^{\circ}00^{\prime}$, and south latitude $0^{\circ}00^{\prime}-2^{\circ}40^{\prime}$ neighboring Nova-Canton Trough in the Pacific Ocean which was surveyed by the Geological Survey of Japan in 1982.

  • PDF