• Title/Summary/Keyword: maneuvering target

Search Result 199, Processing Time 0.034 seconds

Design of a new command to line-of-sight guidance law via feedback linearization technique (궤환 선형화 기법을 응용한 새로운 시선 지령 유도 법칙의 개발)

  • Chong, Song;ha, In-Joong;Hur, Jong-Sung;Ko, Myoung-Sam;Song, Taek-Lyul;Ahn, Jo-Young;Lee, Jang-Gyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.93-98
    • /
    • 1989
  • This paper describes the application of the recently developed feedback linearization technique to designing a new Command to Line-of-Sight (CLOS) guidance law. We show that the CLOS guidance problem can be formulated as a tracking problem. Then, using the feedback input-output linearization technique, we find a new 3dimensional CLOS guidance law that can assure zero miss distance for a randomly maneuvering target. It sheds light on the feedforward acceleration compensation terms used in the conventional CLOS guidance laws to improve the performance. To illustrate further the significance of our result, simulation results are given.

  • PDF

Design of a new command to line-of-sight guidance law via feedback linearization technique

  • Chong, Song;Ha, In-Joong;Hur, Jong-Sung;Ko, Myoung-Sam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1355-1360
    • /
    • 1990
  • This paper describes the application of the recently developed feedback linearization technique to the design of a new command to line-of-sight (CLOS) guidance law for skid-to-turn (STT) missiles. The key idea lies in converting the three dimensional CLOS guidance problem to the tracking problem of a time-varying nonlinear system. Then, using a feeedback linearizing approach to tracking in nonlinear systems, we design a three dimensional CLOS guidance law that can ensure zero miss distance for a randomly maneuvering target. Our result may shed new light on the role of the feedforward acceleration terms used in the earlier CLOS guidance laws. Furthermore, we show that the new CLOS guidance law can be computationally simplified without performance degradation. This is made possible by dropping out the terms in the new CLOS guidance law, which obey the well-known matching condition.

  • PDF

Maneuverability Improvement of EOTS by Driving the Outer Gimbal First (외부짐발 선구동에 의한 EOTS의 기동성 개선)

  • Yim, Jong-Bin;Kim, Sung-Su;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.10
    • /
    • pp.873-878
    • /
    • 2013
  • An EOTS (Electro-Optical Tracking System) provides stabilized images while tracking a moving target. This paper presents a novel concept of driving the outer gimbal first for improving the maneuverability of an EOTS, contrary to the conventional inner gimbal mode. It has the advantages of faster positioning performance and stable operation in Nadir-point. Analysis of frequency responses reveal that the present scheme results in a wider control bandwidth and larger gain margin, compared to those of the previous one. The actual experimental results confirm that the maneuvering is stable although the input command has a large angular acceleration.

Input Estimation in Multi-Sensor Environment (다중 감지기 시스템 하에서의 입력 추정 필터 구현)

  • Park, Yong-H.;Hwang, Ik-H.;Yoon, Jang-H.;Seo, Jin-H.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.699-701
    • /
    • 1995
  • An input estimation technique is derived in multi-sensor environment. The proposed approach distribute the computational burden of input estimation to each local sensor and fusion center without loss of its optimality. The performances of proposed method in 2-sensor system are compared with those in single sensor system. Simulation results show that a reliable maneuvering target tracking system can be constructed in multi-sensor environment via proposed approach.

  • PDF

Designing of non-linear maneuvering target tracking method using PHP (PHP 개념을 이용한 비선형 기동표적 추적기법 설계)

  • Son, Hyeon-Seung;Ju, Yeong-Hun;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.297-300
    • /
    • 2006
  • 본 논문에서는 비선형 기동표적의 추적에 대한 새로운 접근 방식을 소개한다. 이 논문에서는 표적의 가속도를 시변 변수인 표적의 추가적인 잡음으로 두고 각각의 가속도 간격의 정도에 따라 얻어지는 모든 잡음에 대한 변수에 의해 각각의 하부 모델들을 특성화시켰다. 표적의 기동중에 나타나는 가속도를 효과적으로 다루기 위하여, 잡음의 크기가 급격히 증가할 경우 증가분을 가속도로 인식하여 기동표적 관계식에 이용하였다. 또한 모르는 가속도에 따른 시변 변수를 적응적으로 어립잡기는 어렵기 때문에 정밀한 계산을 위하여 퍼지 뉴럴 네트워크와 적응 상호작용 다중모델 기법을 이용하였다. 퍼지 뉴럴 네트워크의 동정을 위해서는 오차 역전파 학습법을 사용하였다. 그리고 제안된 알고리즘의 수행 가능성을 보여주기 위하여 몇 가지 예를 제시하였다.

  • PDF

Study on Improvement of Target Tracking Performance for RASIT(RAdar of Surveillance for Intermediate Terrain) Using Active Kalman filter (능동형 Kalman filter를 이용한 지상감시레이더의 표적탐지능력 향상에 관한 연구)

  • Myung, Sun-Yang;Chun, Soon-Yong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.3
    • /
    • pp.52-58
    • /
    • 2009
  • If a moving target has a linear characteristics, the Kalman filter can estimate relatively accurate the location of a target, but this performance depends on how the dynamic status characteristics of the target is accurately modeled. In many practical problems of tracking a maneuvering target, a simple kinematic model can fairly accurately describe the target dynamics for a wide class of maneuvers. However, since the target can exhibit a wide range of dynamic characteristics, no fixed SKF(Simple Kalman filter) can be matched to estimate, to the required accuracy, the states of the target for every specific maneuver. In this paper, a new AKF(Active Kalman filter) is proposed to solve this problem The process noise covariance level of the Kalman filter is adjusted at each time step according to the study result which uses the neural network algorithm. It is demonstrated by means of a computer simulation that the tracking capability of the proposed AKF(Active Kalman filter) is better than that of the SKF(Simple Kalman Filter).

Coherent Multiple Target Angle-Tracking Algorithm (코히어런트 다중 표적 방위 추적 알고리즘)

  • Kim Jin-Seok;Kim Hyun-Sik;Park Myung-Ho;Nam Ki-Gon;Hwang Soo-Bok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.230-237
    • /
    • 2005
  • The angle-tracking of maneuvering targets is required to the state estimation and classification of targets in underwater acoustic systems. The Problem of angle-tracking multiple closed and crossing targets has been studied by various authors. Sword et al. Proposed a multiple target an91e-tracking algorithm using angular innovations of the targets during a sampling Period are estimated in the least square sense using the most recent estimate of the sensor output covariance matrix. This algorithm has attractive features of simple structure and avoidance of data association problem. Ryu et al. recently Proposed an effective multiple target angle-tracking algorithm which can obtain the angular innovations of the targets from a signal subspace instead of the sensor output covariance matrix. Hwang et al. improved the computational performance of a multiple target angle-tracking algorithm based on the fact that the steering vector and the noise subspace are orthogonal. These algorithms. however. are ineffective when a subset of the incident sources are coherent. In this Paper, we proposed a new multiple target angle-tracking algorithm for coherent and incoherent sources. The proposed algorithm uses the relationship between source steering vectors and the signal eigenvectors which are multiplied noise covariance matrix. The computer simulation results demonstrate the improved Performance of the Proposed algorithm.

Effectiveness Analysis for Survival Probability of a Surface Warship Considering Static and Mobile Decoys (부유식 및 자항식 기만기의 혼합 운용을 고려한 수상함의 생존율에 대한 효과도 분석)

  • Shin, MyoungIn;Cho, Hyunjin;Lee, Jinho;Lim, Jun-Seok;Lee, Seokjin;Kim, Wan-Jin;Kim, Woo Shik;Hong, Wooyoung
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.3
    • /
    • pp.53-63
    • /
    • 2016
  • We consider simulation study combining static and mobile decoys for survivability of a surface warship against torpedo attack. It is assumed that an enemy torpedo is a passive acoustic homing torpedo and detects a target within its maximum target detection range and search beam angle by computing signal excess via passive sonar equation, and a warship conducts an evasive maneuvering with deploying static and mobile decoys simultaneously to counteract a torpedo attack. Suggesting the four different decoy deployment plans to achieve the best plan, we analyze an effectiveness for a warship's survival probability through Monte Carlo simulation, given a certain experimental environment. Furthermore, changing the speed and the source level of decoys, the maximum torpedo detection range of warship, and the maximum target detection range of torpedo, we observe the corresponding survival probabilities, which can provide the operational capabilities of an underwater defense system.

Extended Target State Vector Estimation using AKF (적응형 칼만 필터를 이용한 확장 표적의 상태벡터 추정 기법)

  • Cho, Doo-Hyun;Choi, Han-Lim;Lee, Jin-Ik;Jeong, Ki-Hwan;Go, Il-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.507-515
    • /
    • 2015
  • This paper proposes a filtering method for effective state vector estimation of highly maneuvering target. It is needed to hit the point called 'sweet spot' to increase the kill probability in missile interception. In paper, a filtering method estimates the length of a moving target tracked by a frequency modulated continuous wave (FMCW) radar. High resolution range profiles (HRRPs) is generated from the radar echo signal and then it's integrated into proposed filtering method. To simulate the radar measurement which is close to real, the study on the properties of scattering point of the missile-like target has been conducted with ISAR image for different angle. Also, it is hard to track the target efficiently with existing Kalman filters which has fixed measurement noise covariance matrix R. Therefore the proposed method continuously updates the covariance matrix R with sensor measurements and tracks the target. Numerical simulations on the proposed method shows reliable results under reasonable assumptions on the missile interception scenario.

Inter-Pulse Motion Compensation of an ISAR Image Generated by Stepped Chirp Waveform Using Improved Particle Swarm Optimization (펄스 간 이동 성분을 갖는 계단 첩 파형의 개선된 PSO를 이용한 ISAR 영상 요동 보상)

  • Kang, Min-Seok;Lee, Seong-Hyeon;Park, Sang-Hong;Shin, Seung-Yong;Yang, Eunjung;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.218-225
    • /
    • 2015
  • Inverse synthetic aperture radar(ISAR) is coherent imaging system formed by conducting signal processing of received data which consists of radar cross section(RCS) reflected from maneuvering target. A novel algorithm is proposed to compensate inter-pulse motion(IPM) for the purpose of forming an well-focused ISAR image through signals generated by stepped chirp waveform( SCW). The velocity and acceleration of the target related to IPM are estimated based on particle swarm optimization (PSO) which has been widely used in optimization technique. Furthermore, a modified PSO which enables us to improve the performance of PSO is used to compensate IPM in a very short-time. Simulation results using point scatterer model of a Boeing-737 aircraft validate the performance of the proposed algorithm.