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ABSTRACT

This paper describes the application of the recently
developed feedback linearization technique to the design
of a new command to linc-of-sight {(CLOS) guidance law
for skid-to-turn (STT) missiles. The key idea lies in
converting the three dimensional CLOS guidance problem
to the tracking problem of a timc-varying nonlinear system.
Then, using a feeedback lincarizing approach to tracking
in nonlincar systems, we design a three dimensional CLOS
guidance law that can ensure zero miss distance for a
randomly mancuvering target. Our result may shed new
light on the role of the feedforward acceleration terms
used in the earlicr CLOS guidance laws. Furthermore, we
show that the new CLOS guidance law can be
computationally simplified without performance
degradation. This is made possible by dropping out the
terms in the new CLOS guidance law, which obey the
well-known matching condition.

NOMENCLATURE
L. Yaw angle of the missile
0, Pitch angle of the missile
bine Roll angle command
o, Azimuth angle of the LOS to target
Yo Elevation angle of the LOS to target
Om Azimuth angle of the LOS to missile
Ym Elevation angle of the LOS to missile
Ao OOy
Ay Ym~Yt
T Thrust force
D Drag force
M Mass of the missile
g Gravity acccleration
a, Axial acceleration of the missile
ay Yaw acceleration command
Pitch acceleration command
Vi Missite velocity
Ry Missile range from the ground tracker
R, Target range from the ground tracker
0 sinf
co cosd
A Induced norm of a matrix A
jx ] Euclidean norm of a vector x
X YnZy) Inertial frame
(XuYmnZy)  Missile body frame
(X, Y Zy) LOS frame .
(Xs Y Zm) Missile position in the inertial frame
(Rp.cq.ep) Missile position in the LOS frame
vy iy Unit vectors corresponding, respectively.
to the Xy X axes
ip Jp kg Unit vectors corresponding.  respectively,

to the X Yo 7y ases
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I. INTRODUCTION

The principle of command to line-of-sight (CLOS)
guidance [1-7] is to force the missile to fly as nearly ox
possible along the instantancous line joining the ground
tracker and the target, which is called the line-of-sight
(LOS). The CLOS guidance has been regarded as a low
cost guidance concept because it emphasizes placement of
avionics on the launch plaiform,” as opposed to on bourd
the expendable weapon.

The CLOS guidance laws for skid-to-turn (STT)
missiles are composed of two lateral acccleration
commands, pitch and yaw. Each of them is shaped by
the sum of an error compensation aceceleration term to
null deviation of the missile from the LOS to target and
a feedforward acceleration term to make the missile chase
the LOS rotation. The feedforward acceleration term plays
an important role when large LOS rates occur. as is the
case with CLOS guidance for short-range air defence
intercept scenarios. In the carlier results {2-4]. however,
this feedforward acceleration  term  has  been  derived
approximately under some restrictive  assumptions.  In
{2,3], it is assumed that the missile is on the 1.OS to
target and its velocity vector lies on the so called flyplanc.
In [4], the lateral acceleration of the missile projection
point onto the LOS to target is adopted as the feedforward
acceleration  term.

In this paper, we focus our efforts on clucidating the
precise cxpression and role of feedforward acceleration
term for the case of general pursuit situation. We first
show that the gencral three dimensional CLOS guidunce
problem can be converted to a nonlinear tracking problem.
This is our key result. ‘Thercby, the recently developed
feedback lincarization technique [5-8.10,11] can be casily
applied to the CLOS guidance problem. We propose .
new CLOS guidance law. It involves a term which is,
in the form, similar to the feedforward acceleration term
used in the earlier results |2-4]. This term in our new
CLOS guidance law is required to transform the nonlinear
tracking problem into a linear one, while the feedforward
acceleration term in the earlier results is used to make
the missile chase the LOS rotation. Thus, our result may
shed new light on the role of the feedforward acceleration
terms used in the earlier CLOS guidance laws. It is shown
that our CLOS guidance law can drive miss distance to
zero against a randomly maneuvering target in the three
dimensional space. It is, however, computationally
complex. In this context, we attempt to simplify the ncw
CLOS guidance law so that the computational burden is
reduced without performance degradation. To the authors’
knowledge, however. our paper presents the first result
to apply the feedback lincarization technique to missile
guidance.



I. PROBLEM FORMULATION

In this section, we show that three dimensinal CLOS
guidance problem can be formulated as a tracking problem
of a time-varying nonlinear system.

In modelling the pursuit dynamics of missile and
target, we assume that

Al: Compared with the overal guidance loop, the
autopilot and ground tracker dynamics are fast enough
to be neglected.

A2: The total angle-of-attack is small enough to be
ncglected.

These assumptions have been generally accepted in
the design and analysis of missile guidance laws. However,
as will be discussed soon, the assumption A2 is not the
precondition for the desired performance of our new
CLOS guidance law but is introduced only for simplicity
of our developments.

The three dimensional pursuit situation is depicted
in Fig. 1. Under the prescribed assumptions, motion of
the missile in the inertial frame can be represented by

Xy = 350,100 -y (5 1,56, Oy CD U )

-au(C(bmcSG mCUm-sd meS¥m)

Vi = 8BSy (50 eSSy i) M
'au(c‘brncsems‘bm+Sd'mccd'm) .
im = ZlXsem-{baycsd’mccgm-*'a—zccd>mcc0m'g ’
‘l"m = ayc‘:(bmc/(\'mcem)'ﬂmsd’mg(vmcem) ’
0n = a)/(:S‘bmc“lv‘]m-+.azccd)mc/‘/m'gcemlvm : 2)
Here, v, is the velocity of the missilc given by
Vi = Gttt 20)'? 3
and a, is the axial acceleration of fhe missile given by
a, = (I-DYM . 4

Note that the assumption A2 is used only in deriving
a simplificd modcl (2) of missile attitude dynamics. As
will be seen in Section N and V, the derivation of our
CLOS guidance laws (38), (41) does not rely on the
simplificd model (2) of missile attitude dynamics. Hence,
omission of A2 does not result in any degradation of
guidance performance.

Next, we define tracking error in order to convert
the CLOS guidance problem into a tracking problem. As
mentioned in Section I, the concept of CLOS guidance
is to guide the missile onto the LOS to target. Therefore,
a reasonable choice of tracking error may be

e & |

NN

Even in the case of small tracking error, however, this
selection can cause large miss distance as the missile flies
farther from the launch point.

To overcome this shortcoming, we consider a different
choice of tracking error. We first define the LOS frame
as is shown in Fig. 2. The coordinates (Rp.e,c;) indicated
in Fig. 2 represent the missile position in the LOS frame.
We define the tracking ecrror as

o

€1 80 Xy + CO Yy
e = ES 6)
) “SYLO Xy SY SO Y+ CYiZn | -
Note that {e| just represents the smallest distance from

the missile to the LOS to target. Therefore, the missile
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eventually will hit the target if the tracking error is driven
to zero before the target crosses the missile.

So far, we have shown that the three dimensional
CLOS guidance problem can be formulated as a tracking
problem. From notational convenience, the column vector
[%;.--%,]T will occasional be denoted by (X;.....x;). x=
(xl’XZ’X3’X4’X5’X6‘X7vx8) =(xm‘Ym‘Zm’xm’}'m’zm’l“m’em)’ u=(u
)= (age.,)  and - yg= (Va1 = (0¥ Using  these
notations and regarding the axial acceleration of the missile
as a time function, we can write the equations (1),
(2) and (6) in the following state space form:

x = fo(x,t) + % fi(x)y , e = E(xyg) -
3l
where l
To(x,0)= (%4,X5,Xg,2,(t)cX5CXg,2, ()sXCXg,
ax(t)sxg»g,O,-gcxg/(X42+x52+x62)1/2)‘ (8)

£(x)=(0,0,0,-sb, Sxgcx7-Ch ) 5X7,-5b 1, SXgSXy + C, 0K,
5 e CXg Cb (X 2+ %52+ X2 Pexgh, s J (%, 2+ X2+ x62) 12),
©
£,(x)=(0.0.0.-cd, 5XgcX7+ 5b 1, $X7,-Cb SXgSX-8 1 X7,
€ e Cxg -5 (42 X2+ xg 1) Pexgh o /(3,2 + X524 % 2)12),
10)
4

E(x.yg)=(-sox + €O Xp,-SY£0 X -SY,80 Xp CYXs) -

Now, the tracking problem we want to solve is to find
a contro! law u to drive the tracking error e to zcro.

. FEEDBACK LINEARIZING
APPROACH TO TRACKING
NONLINEAR SYSTEMS

IN

In this scction, we describe our approach to the
tracking problem formulated in the preceding section. Our
approach is basically motivated by the recently developed
input-output linearization technique [5-8]. The general idea
of the input-output lincarization tcchnique is to linearize
the input-output dynamic characteristics of a nonlincar
system via an appropriate nonlinear feedback control law.
This input-output linearization technique facilitates the
controller design of nonlinear systems since the resulting
systens  have linear input-output dynamic charatcristics.
This technique has been extended to the trucking problem
of nonlinear systems [9,12].

The practical use of the input-output lincarization
technique has been severcly limited by the difficulties in
verifying the conditions for input-output linearization and
solving a set of partial differential equations to obtain the
desired control law and state transtormation. However,
there is a special class of nonlincar systems, for which
it is not necessary to solve a sct of partial differential
equations [5,7,10]. In the similar way, we can characterize
the special class of tracking problems, to which the
approach proposed in [12] can be casily applied. For
rcadable deveclopment of our results, we describe it here
although its characterization is easily deducible from the
results in [5,7,10].

Let R* be the sct of nonncgative tcal numbers.
Consider the following nonlinear tracking problem.

m
fo(x,t) + ]2;2‘ fi(x, )y e = E(xyy)

x = . (12)
where f:R"<R¥-R", u(t)eR, i=1,....m; [ER"XR*-R",
ER"XR%R™, y;:R*-R% x(1)eR®, c(t)eR™, teR*. Here,
the time function y4 represents the desired trajectory of
the system output. For the system (12), define the vector

fields X, X, i=1,...,m, by
n
Xp = ot + I fy (x,00/0%;
T



n
X = 3); f(x,08/0x;,  i=1,..m , (13)

where f;;, x; are the jth components of f;, x respectively.

Suppose that the nonlinear system (12) satisfies:

BI: There exist nonnegative integers d, i=1,...,m
such that

(XX Ei(xyg(0) - - - XpXg'E(xyg(1)]=0,
xeR?, eR*, k=0,..d-1, (14

(X XAEXYSD) - - XpXoSEx,yg(0)]#0,
xeR" teR™. (15)

and

B2: Vq € Cl
Note that when
[XExydD) . . . X Exy))I#0, xeR?, teR*, (16)

the assumption Bl is still s.atisfigd by d;=0.
Define the functions D, A" by

where dy=max{d;+1, i=1,...,m} .

D (x,t,Y (1) =

X XpME (YD) - - XpXoME (xy4(1)
: : (17)
X X IE (x,¥4(1D) . . . XpXetmEpg(x,y4(1)

AT Y (0)= (X8 B (x,Y4(0)s - Ko HE g (%,ya(1)
(18)
where  Yo(t)=(y4(0),y4(0)....,y, 90 ()]eR¥D* ) and 3,0
is the jth derivative of y,.
Now, we show that the control law and state

transformation for input-output linearization of the system
(12) can be easily found if the following condition holds.

B3: D(x,1,Y,(1) is nonsingular, xeR", teR*.
Define the mappings «, B and T by

a(xtYy(t)) = -[D'@LYL)TA LY (D) | (19)
B(x,t,Y4(1)) = [D'(x,t,Yd(t))]'1 , (20)
T(x,6 Y (1) = (T8 Yg(0),.., T (x,1, Y (1)) 21)
where

Ti(x,t,Yy(t))=

(Ei%,yo(0) XoBi(%,940),.... XV Ey(x,4(0)) - (22)

Then, it is not difficult to see that the system (12) with
the control law:

u = alxtY4t) + Bx.tY(0)u , (23)
is transformed through the state transformation:

X = TxLY4D) , (24)
into the decoupled linear system:
X = AKX+ Bi, e = Cx (25)

where x()eR%*!, A=diagA;, B=diagh, C=diagc,, and
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0
A = [ Idio} e RGHDx@-1)

0 .- ’
5,=(0,0,...,1)eR&*1,
§=[1 0 ... 0]eR>*&*D j=1 . . m. (26)

Hence, we can easily find the desired control law and
state transformation for input-output linearization under the
assumptions B1, B2 and B3.

Now, take the new input T in (23) by

U o= Ky = KTi(x.t,Y4(t)), i=1,....m 27
so that
AﬁK]-Ei, i=1,...,m, are stable matrices. (2%)

Then, the tracking crror will tend to zero since the closed-
loop system given by (12), (23) and (27) has the same
input-output dynamic characteristics as the stably decoupled
lincar system (25) with (27).

V. DESIGN OF NEW CLOS GUIDANCE
LAW

In this section, we design a new CLOS guidance law,
by applying the feedback linearizing approach described
in Section [ to the tracking problem formulated in Section
I. To do so, we make the following assumption in
addition to the assumptions Al, AZ2.

A3 iy > 0, 120 .

In other words, we assume that the missile flies with its
XM-axis upwar_d in thf: YL-ZL Plane until target
interception. This assumption is valid in the usual pursuit
situations of missile and target. Note that the unit vectors
iy. i, can be represented in the inertial frame as

iy = cBpcbpip + cBpsbi + o0 kg .
ip = oycoip + cysodp + osykp . (29)

respectively. Therefore, thc assumption A3 can be stated
alternatively as follows

A¥: oyl c(-o) + osysl, > 0. t=0 .

Direct computation yields

XE = XE =X B =X,E,=0 ,

X XoE = -8b,5%g5(x5-0 ) + e c(Xq-0)

XX oE = -C ,SXg8(Xy-0 ) -sb  C(x9-07) (30)
X XoEy=s5ddcycxg+ sy,5%5c(Xy-0 )} + e 5v,5(x9-0 ) .

X XoEy=cd ey cxg+ 5y,5%g(X7-0 )} -5 SY,8(x0-0,) .

By the assumption A3 or A3,

det [Xlonl XyXoE ] = eyexge(x-o)tsysxg > 0,
XiXoEy  XpXoE, (31)

Thus, the assumption A3 implies Bl and B2. In addition.
if the flight path of target in the three dimensional space
is smooth enough so that

Ad: o, yoe CF

we see that all conditions B1-B3 in Section W are satisfied
with n=8, m=2, s=2 and d;=d,=1. Through some
tedious calculation, we have



D'(x,t,Yd(t)) =
-8 SXgS(Xg-O ) F e C(Xp-0)  -Cp SKgS(Xg-0 )-8 1 C(X5-07)

s cvexgt SY,SXgC(X7-0r )} +

C‘bmcSy ts(x7'0t)

b pACycxgt 5y, s%gC(Xg-0 )}

5O eSY (X570 )

32)
AT(xLY () =
(0,00 + 6 250 )%, (30 50+ o Feo )Xy -
26 x,460-20 X557, + a, (D)cxgs(x,-07)
.. . .. " . 33
‘ (o-lsalsyt-b- "tzC‘TzSVt+ 20 Y,50 €YY CY ot 'ytzsylccrt)xl— (33)
- . .. .- .2
‘ (clcutsyt—(rlzsctsyt-f- 20 (Y€ €Y T Y CYST Y Y S0 )Xo
SVt Y213+ 2(6 SO SV CYCo )Xy
i 2V CVSO+ G (€O Sy )Xs-2Y XSV
L {sxgeycxgsy C(x-a)ta(t)-cy,8
TLY (1) =
I’" -X {80+ X,C0, ]
f -0 X €O (07 X550 X450+ XCO (34)
|

| “X18YCO - XoSY50  + X3CY,

| (050 SV EYCO )X (VYT + 00O S VX
L VX3SV X4C0 Y X580 SY T X6CY,

Using the following identities with the definition of ey,
e, in (6) and the identities on €&, &, in (34),

p

Rp = X CY€0 X0y S0+ X3Sy,

lip = (6,00 8YF VSVCO )X (VY50 -0 £ CY )Xy + (35)
YEKCYF X4CO LY F X550 OV H XSy
we can write A” in a more useful form:
AT(xLYy() =
(267590 V)R, + G ler + (201, ey, T sv)er
26 Rpey,+ 26 €57+ a(t)cxgs(Xy-0y)
(36)

(¥t o 35y Cv)Rp-0 €5y, + (622, + 4 Dey

29, Rp-20 &, 57, + {sXg0y-CXgsy e (x-a M, (1)-cveg
Using (32)-(34), we can construct the control law of the
form (23) which transforms the system (7) into the
decoupled system (25) with m=2 and d;=d;=1. Now,
if we choose the new input u in (27) so that

K;=K,=[-(A\2+w?) -2A]>0, (37)

the condition (28) is satisfied and hence the tracking error
will converge to zero.

The final form of our new CLOS guidance law is
given by

u = [D(x.t, YgO) KT, Y ((1))-AT(x,1, Ya(O)}

[y wllgm

by by Pt q;

A>0, w>0,

(38)
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where

a=sy,s0,+cy,c0,c(P -0y,

by =5y$0c(Y o) +co Oy, by=30 s(,-0y),

by=-sv,5(¥-0), by=c(¥,-0),

pr=-(A2+ 02)e;- 208, + (267,570, CY) Rp-26 Rpcy, +
B, )(T-DYM

py=-(\2+ wl)e, 2hey- (¥, + étzsylcyt)Rp—2§lliP+
{88 ey B sy (U o JHT-DYM |

Q1= +&7%,+ (26 7,0v,+ Tsy)e 20 &8Y, .

(39)

G=-0e syt (628 +¥P)ey 208 sy,

Now, it should be clear that the missile guided by this
guidance law always will hit any randomly maneuvering
target if the gains in (37) are chosen sufficiently fast.

Most of the guidance informations required by our
guidance law (38) can be aquired directly from a ground
tracker and an on-board inertial navigation unit (INU).
Specifically, such informations are R, o, ¥, 0, ¥, A
o, Ay, ¥, and B_. Since Rp, € and e, cannot be
measured directly, these quantities ought to be computed
indirectly from the polar informations available from the
ground tracker in the following way.

Rp = R c(Av+vy)eycAo+R s(Ay+y)sy, ,
€, = R c(Ay+vyysho (40)
e = Rps(Ay+y ey Rc(Ay+y)sycAo .

The derivative informations Rp, €, €, &, and ¥, can
be cstimated with band-limited differentiators or Kalman
filters. Also the time history of (T-D)/M can be estimated
from experimental data.

Now, we give some comments on the earlier results
closely related to ours. Our guidance law involves some
terms that are, in the form, similar to the feedforward
acceleration and error compensation acceleration tcrms
used in the earlier results [2-4]. The feedforward
acceleration term was to make the missile chase the LOS
rotation while the error compensation acceleration term
was to null deviation of the missile from the LOS to
target. In the earlier results, these terms have been
calculated under some restrictive assumptions. In [2,3], it
is assumed that the missile is on the LOS to target and
its velocity vector lies on the flyplane which is the
imaginary plane spanned by the target velocity and the
LOS to target. In [4], the latcral acceleration of the
missile projection point onto the LOS to target is adopted
as the feedforward acceleration term. Therefore, their
guidance laws may undergo some performance degradation
in the case that such restrictive assumptions are not valid.
From this context, our result, in some sense, completes
the earlier works in [2-4]. The recently developed
nonlinear control technique has proven to be a useful tool
in doing so.

In the practical viewpoint, the new CLOS guidance
law (38) is compurtationally complex. Moreover, the
promised performance of our guidance law cannot be fully
achieved due to modelling errors such as the ground
tracker and autopilot dynamics. Therefore, it may be more
practical to find a guidance law which requires less
computation but does not degrade guidance performance
significantly. In the next section, we explore this problem.

V. SIMPLIFICATION OF NEW CLOS
GUIDANCE LAW

In this section, we attempt to simplify the new CLOS
guidance law in (38) to reduce computational burden



without performance degradation. For this aim, we drop
out some terms in A to obtain the following simplified
CLOS guidance law:

u = [D'OOGY )] HKT(,L Y o(0)-A (x5 Y (1)}

=—{bl 51 p ]/
by byl (41)
Comparing two guidance laws in (38) and (41), we can
see that such a simplification reduces the computational
burden almost by half. In what follows, we show that
the simplified guidance law in (41) can provide almost
the samc guidance performance as the original one in
(38) provided that K is chosen sufficiently large.

Let AA'2A-A". Then, wec see that AA  has the
form:

.

AA = AKT (42)
where
AK= [ 52 0 207, TS, 2&,5%]
L-0STe 268, (.712527:'*' ﬁxz
(43)

Note that the target acceleration is bounded and hence
that o, v, o, and ¥, are bounded during the guidance.
Therefore, we can assume without loss of generality that

A5:  There exists a constant 8 > 0 such that
TAKE < & ., =0 . (44)
Now, choose N, w in (37) so that

A2+ w24 1) [+ 02+ 1240 2o > B (45)

Then, let KK=K+§K. Since KK has simple structure,
it can be transformed to a rcal canonical form. To sec

this, take
P = Py 07 P0=[10:{
L 0 P, J - (46)
Then,
Ag=P 1A P = [A o] A= [ A o ]
0 A l. @ -A 47)
Furthermore,
1Pel = [\ 24w+ 1)+ (A2 wi+1)4w?)2,
1Pl = Py Il foo. (48)
Choose a Lyapunov-like function V by
V() = 121vt) |2 v(t) = PIIT(x YD) . (49)

Since T, x, Y4 are all C!, we can take the total time
derivative of X=T(x,t,Y4(t)) along the solution trajectory
of the closed-loop system (7) and (41). Then, we have

£ = (Ag+BAK)E . (50)
By (47)-(50),

V=xT(P TP A+ A TP TP R/2+ KT TP P BAKR
VIR + ANv+ VTP TBAKPLY
20 1P TP I BYS) (V2

S
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< 2V 1)
where
w=AB[(A2+ w2+ 1)+ (Pt w2+ 12402 20 (52)
This implies that
(v | < [wW0)|eht . (53)
This with the fact that
e = CPev . CP¢ = C (54)
yiclds the desired result:
[e(| = pe*t, t=20 (59)
where

(56)

From (45) and (55), we sce that, if A and o are chosen
sufficiently large, the simplified CLOS guidance law in
(41) will guarantee zero miss distance against any target
with bounded acceleration. To prove this, we have closely
followed the arguments in {15} sincc the neglected term
[D'T'AA" satisfics the well-known matching condition on
modelling errors. In the carlier results (See the rcferences
in [15]), the matching condition was required for robust
control of uncertain systems. Here. we have used it for
simplification of controllers.

M. CONCLUSION

We have presented a novel approach to the three
dimensional CLOS guidance problem. We convert cleverly
the CLOS guidance problem to a nonlinear tracking
problem so that the recently developed approach to robust
tracking in nonlinear systems can be applied effectively.
Our work differs from the earliecr onc mainly in thut
nonlincarity of guidance mechanism is fully taken into
account in the process of CLOS guidance law design. Our
result can be casily extended to  bank-to-turn  (BT7))
missiles.

By simulations, we verified guidance performance of
our new and simplified CLOS guidance laws and
investigated the effect of the autopilot and ground tracker
dynamics on guidance performance. The results will be
presented in the conference.
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