• 제목/요약/키워드: management systems for records

검색결과 343건 처리시간 0.023초

Begomoviruses and Their Emerging Threats in South Korea: A Review

  • Khan, Mohammad Sajid;Ji, Sang-He;Chun, Se-Chul
    • The Plant Pathology Journal
    • /
    • 제28권2호
    • /
    • pp.123-136
    • /
    • 2012
  • Diseases caused by begomoviruses (family Geminiviridae, genus Begomovirus) constitute a serious constraint to tropical and sub-tropical agro-ecosystems worldwide. In recent years, they have also introduced in temperate regions of the world where they have great impact and are posing a serious threat to a variety of greenhouse crops. Begomoviral diseases can in extreme cases reduce yields to zero leading to catastrophic losses in agriculture. They are still evolving and pose a serious threat to sustainable agriculture across the world, particularly in tropics and sub-tropics. Till recently, there have been no records on the occurrence of begomoviral disease in South Korea, however, the etiology of other plant viral diseases are known since last century. The first begomovirus infected sample was collected from sweet potato plant in 2003 and since then there has been gradual increase in the begomoviral epidemics specially in tomato and sweet potato crops. So far, 48 begomovirus sequences originating from various plant species have been submitted in public sequence data base from different parts of the country. The rapid emergence of begomoviral epidemics might be with some of the factors like evolution of new variants of the viruses, appearance of efficient vectors, changing cropping systems, introduction of susceptible plant varieties, increase in global trade in agricultural products, intercontinental transportation networks, and changes in global climatic conditions. Another concern might be the emergence of a begomovirus complex and satellite DNA molecules. Thorough understanding of the pathosystems is needed for the designing of effective managements. Efforts should also be made towards the integration of the resistant genes for the development of transgenic plants specially tomato and sweet potato as they have been found to be widely infected in South Korea. There should be efficient surveillance for emergence or incursions of other begomoviruses and biotypes of whitefly. This review discusses the general characteristics of begomoviruses, transmission by their vector B. tabaci with an especial emphasis on the occurrence and distribution of begomoviruses in South Korea, and control measures that must be addressed in order to develop more sustainable management strategies.

항만도시재생 기록화 요소 개발에 관한 연구 (A Study on the Development of Port Urban Regeneration Recording Elements)

  • 권도균;장우권
    • 한국문헌정보학회지
    • /
    • 제58권1호
    • /
    • pp.441-470
    • /
    • 2024
  • 이 연구의 목적은 도시재생사업의 시대적 배경에 맞춰, 도시 중에서 항만도시를 중심으로 도시재생사업을 효과적으로 기록할 수 있는 기록화 요소를 개발하는데 있다. 기록화 요소를 개발하기 위해 도시재생법, 항만관련법, 도시재생 관련 연구 등에서 지리적 정보, 산업정보, 법적 행정적 변화 등 8개 분야에서 기록화 해야 할 요소를 도출하였다. 도시재생과 관련된 전문가 20여명을 대상으로 도시재생법, 항만관련법, 관련 연구 등에서 도출한 요소에 대한 의견을 묻는 델파이(Delphi)조사를 3회에 걸쳐 실시하고 32개의 최종요소를 도출하였다. 선정된 각 영역별 기록화 요소는 지리적 정보(6), 비물질적 정보(4), 환경정비(5), 산업·경제적 1·2차 산업(2), 산업·경제적 3차 산업(3), 변화사항(6), 구성원 참여(4), 지역내 법·행정적 체계(2) 등이다. 또한 항만도시재생 기록화 요소를 지방자치단체의 기록물관리 전문요원에게 적용 가능성을 검증하였다.

농업유산으로서 남원시 신기리 당산숲의 경관 특성 및 관리방안 고찰 (Perspectives on the Landscape Characteristics and Management Scheme of Sacred Dangsan Forest in Singi-ri, Namwon-si as an Agricultural Heritage)

  • 최재웅;김동엽;윤순덕;곽민정
    • 한국전통조경학회지
    • /
    • 제34권3호
    • /
    • pp.115-123
    • /
    • 2016
  • 이 연구는 농업유산으로서 남원시 신기리 당산숲의 경관 특성을 조사한 것으로서, 관리 개선방안 고찰을 통해 농촌마을 신기리의 활력을 제고하고자 하였다. 국제연합식량농업기구는 각 나라의 농지, 독특한 농업경관, 문화다양성 보호 등을 위해 '세계중요농업유산' 개념을 정립하였다. 농림축산식품부는 농촌발전을 위한 새로운 목표와 수단을 만들어 나가는 데 있어서, 농업유산이 핵심전략 자원이라고 평가하고 있다. 수 백년 이상의 당산제 역사를 갖고 있으며 농지와 연결되어 있는 농어촌 전통마을숲, 당산숲은 한국을 대표하는 '농업유산'이라고 할 수 있다. 신기리 당산숲은 두 개의 당산숲과 하나의 비보숲으로 이루어져 있다. 특히 395m 길이에 15m 폭을 가진 두 번째 당산숲은 조산 위에 조성되어 있다. 대부분의 당산숲은 조성 내력에 대한 기록이 없으나, 신기리 당산숲은 두 번째 당산숲 안에 조성 내력이 기록된 '토성축성기념비'가 보존되어 있는 것이 가장 큰 특징이라고 할 수 있다. 그러나 신기리 당산숲은 이러한 특징에도 불구하고 관심을 받지 못한 채 방치되어 있다. 가치 있는 경관 특성을 지닌 신기리 당산숲은 일반 대중에게 널리 인식될 필요가 있다. 신기리 당산숲이 '지리산 둘레길'과 연계되면 신기리의 농업경관, 농업유산을 접할 수 있는 기회를 제공할 수 있고, 마을 활력 증진에 기여할 수 있을 것이다.

ZigBee 기반의 무선 뇌 자극기와 네트워크를 이용한 원격 뇌졸중 회복 시스템의 개발 (A Development of Remote Medical Treatment System for Stroke Recovery using ZigBee-based Wireless Brain Stimulator and Internet)

  • 윤효정;유문호;김정자;김남균;양윤석
    • 전기학회논문지
    • /
    • 제57권3호
    • /
    • pp.514-517
    • /
    • 2008
  • Ubiquitous healthcare (U-healthcare) system is one of potential applications of embedded system. Conventional U-healthcare systems are used in health monitoring or chronic disease care based on measuring and transmission of various vital signs. However, future U-healthcare system can be of benefit to more people such as stroke patients which have limited activity by providing them proper medical care as well as continuous monitoring. Recently, an electric brain stimulation treatments have been found to be a better way compared to conventional ones and many are interested in using the method toward the treatment of stroke. In this study, we proposed a remote medical treatment system using ZigBee-based wireless electric brain stimulator that can help them to get a treatment without visiting their doctors. The developed remote medical treatment system connects the doctors to the brain stimulator implanted in the patients via the internet and ZigBee communication built in the brain stimulator. Also, the system receive personal information of the connected patients and cumulate the total records of electric stimulation therapy in a database. Doctors can easily access the information for better treatment planning with the help of graphical visualization tools and management software. The developed remote medical treatment system can extend their coverage to outdoors being networked with hand-held devices through ZigBee.

Clinical characteristics of Kawasaki disease with sterile pyuria

  • Choi, Ja Yun;Park, Sun Young;Choi, Kwang Hae;Park, Yong Hoon;Lee, Young Hwan
    • Clinical and Experimental Pediatrics
    • /
    • 제56권1호
    • /
    • pp.13-18
    • /
    • 2013
  • Purpose: Kawasaki disease (KD) is a systemic vasculitis and affects many organ systems. It often presents sterile pyuria, microscopic hematuria, and proteinuria due to renal involvement. The aims of this study were to define clinical characteristics of acute KD patients with pyuria and to analyze meaning of pyuria in KD. Methods: The medical records and laboratory findings including serum and urine test of 133 patients with KD admitted to Yeungnam University Hospital from March 2006 to December 2010 were reviewed retrospectively. Results: Forty patients had sterile pyuria and their clinical characteristics including age, gender and body weight were not significantly different with those who did not have pyuria. Fever duration after treatment was significantly longer in KD patients with pyuria. Erythrocyte sedimentation rate, C-reactive protein and serum concentration of alanine aminotransferase were significantly higher in patients with pyuria. Hyponatremia and coronary artery lesion were seen more often in patients with pyuria but there was no significant difference. Also serum blood urea nitrogen was significantly higher in KD patients with pyuria. Urine ${\beta}_2$-microglobulin was elevated in both patients groups and showed no difference between two groups. Conclusion: We found more severe inflammatory reaction in KD patients with pyuria. We also found elevation of some useful parameters like ${\beta}_2$-microglobulin that indicate renal involvement of KD through the urine test. Careful management and follow up will need for KD patients with pyuria and it is necessary in the future to study the specific parameters for renal involvement of KD.

Relationship between the maxillofacial skeletal pattern and the morphology of the mandibular symphysis: Structural equation modeling

  • Ahn, Mi So;Shin, Sang Min;Yamaguchi, Tetsutaro;Maki, Koutaro;Wu, Te-Ju;Ko, Ching-Chang;Kim, Yong-Il
    • 대한치과교정학회지
    • /
    • 제49권3호
    • /
    • pp.170-180
    • /
    • 2019
  • Objective: The purpose of this study was to investigate the relationship between the facial skeletal patterns and the shape of the mandibular symphysis in adults with malocclusion by using a structural equation model (SEM). Methods: Ninety adults who had malocclusion and had records of facial skeletal measurements performed using cone-beam computed tomography were selected for this study. The skeletal measurements were classified into three groups (vertical, anteroposterior, and transverse). Cross-sectional images of the mandibular symphysis were analyzed using generalized Procrustes and principal component (PC) analyses. A SEM was constructed after the factors were extracted via factor analysis. Results: Two factors were extracted from the transverse, vertical, and anteroposterior skeletal measurements. Latent variables were extracted for each factor. PC1, PC2, and PC3 were selected to analyze the variations of the mandibular symphyseal shape. The SEM was constructed using the skeletal variables, PCs, and latent variables. The SEM showed that the vertical latent variable exerted the most influence on the mandibular symphyseal shape. Conclusions: The relationship between the skeletal pattern and the mandibular symphysis was analyzed using a SEM, which showed that the vertical facial skeletal pattern had the highest effect on the shape of the mandibular symphysis.

보다 정확한 동적 상황인식 추천을 위해 정확 및 오류 패턴을 활용하여 순차적 매칭 성능이 개선된 상황 예측 방법 (Context Prediction Using Right and Wrong Patterns to Improve Sequential Matching Performance for More Accurate Dynamic Context-Aware Recommendation)

  • 권오병
    • Asia pacific journal of information systems
    • /
    • 제19권3호
    • /
    • pp.51-67
    • /
    • 2009
  • Developing an agile recommender system for nomadic users has been regarded as a promising application in mobile and ubiquitous settings. To increase the quality of personalized recommendation in terms of accuracy and elapsed time, estimating future context of the user in a correct way is highly crucial. Traditionally, time series analysis and Makovian process have been adopted for such forecasting. However, these methods are not adequate in predicting context data, only because most of context data are represented as nominal scale. To resolve these limitations, the alignment-prediction algorithm has been suggested for context prediction, especially for future context from the low-level context. Recently, an ontological approach has been proposed for guided context prediction without context history. However, due to variety of context information, acquiring sufficient context prediction knowledge a priori is not easy in most of service domains. Hence, the purpose of this paper is to propose a novel context prediction methodology, which does not require a priori knowledge, and to increase accuracy and decrease elapsed time for service response. To do so, we have newly developed pattern-based context prediction approach. First of ail, a set of individual rules is derived from each context attribute using context history. Then a pattern consisted of results from reasoning individual rules, is developed for pattern learning. If at least one context property matches, say R, then regard the pattern as right. If the pattern is new, add right pattern, set the value of mismatched properties = 0, freq = 1 and w(R, 1). Otherwise, increase the frequency of the matched right pattern by 1 and then set w(R,freq). After finishing training, if the frequency is greater than a threshold value, then save the right pattern in knowledge base. On the other hand, if at least one context property matches, say W, then regard the pattern as wrong. If the pattern is new, modify the result into wrong answer, add right pattern, and set frequency to 1 and w(W, 1). Or, increase the matched wrong pattern's frequency by 1 and then set w(W, freq). After finishing training, if the frequency value is greater than a threshold level, then save the wrong pattern on the knowledge basis. Then, context prediction is performed with combinatorial rules as follows: first, identify current context. Second, find matched patterns from right patterns. If there is no pattern matched, then find a matching pattern from wrong patterns. If a matching pattern is not found, then choose one context property whose predictability is higher than that of any other properties. To show the feasibility of the methodology proposed in this paper, we collected actual context history from the travelers who had visited the largest amusement park in Korea. As a result, 400 context records were collected in 2009. Then we randomly selected 70% of the records as training data. The rest were selected as testing data. To examine the performance of the methodology, prediction accuracy and elapsed time were chosen as measures. We compared the performance with case-based reasoning and voting methods. Through a simulation test, we conclude that our methodology is clearly better than CBR and voting methods in terms of accuracy and elapsed time. This shows that the methodology is relatively valid and scalable. As a second round of the experiment, we compared a full model to a partial model. A full model indicates that right and wrong patterns are used for reasoning the future context. On the other hand, a partial model means that the reasoning is performed only with right patterns, which is generally adopted in the legacy alignment-prediction method. It turned out that a full model is better than a partial model in terms of the accuracy while partial model is better when considering elapsed time. As a last experiment, we took into our consideration potential privacy problems that might arise among the users. To mediate such concern, we excluded such context properties as date of tour and user profiles such as gender and age. The outcome shows that preserving privacy is endurable. Contributions of this paper are as follows: First, academically, we have improved sequential matching methods to predict accuracy and service time by considering individual rules of each context property and learning from wrong patterns. Second, the proposed method is found to be quite effective for privacy preserving applications, which are frequently required by B2C context-aware services; the privacy preserving system applying the proposed method successfully can also decrease elapsed time. Hence, the method is very practical in establishing privacy preserving context-aware services. Our future research issues taking into account some limitations in this paper can be summarized as follows. First, user acceptance or usability will be tested with actual users in order to prove the value of the prototype system. Second, we will apply the proposed method to more general application domains as this paper focused on tourism in amusement park.

의료정보 프라이버시 염려에 대한 근거이론적 연구: 전자건강기록(EHR) 시스템을 중심으로 (Medical Information Privacy Concerns in the Use of the EHR System: A Grounded Theory Approach)

  • 엄도영;이희진;주한나
    • 디지털융복합연구
    • /
    • 제16권1호
    • /
    • pp.217-229
    • /
    • 2018
  • 본 연구의 목적은 전자건강기록(EHR) 시스템을 통해 환자 개인의 의료정보가 활용되고 공유되는 데에 있어, 사람들이 정보 프라이버시 염려를 갖게 되는 요인은 무엇이며, 프라이버시 침해에 대해 어떠한 대처 전략을 취하고 시스템에 대한 수용 여부는 어떻게 나타나는지 살펴보는 데에 있다. 이를 위해 근거이론 연구방법을 통해 의료기관 방문 경험자들을 대상으로 심층 인터뷰를 수행하여 근거자료를 수집한 후, 의료정보 프라이버시 염려에 대한 근거이론을 구성하고 패러다임 모형을 도출하고자 하였다. 그 결과, 의료정보 프라이버시 염려 발생 요인, 의료정보 프라이버시 염려, 의료정보 프라이버시 침해에 대한 대응 전략, EHR 시스템의 수용 여부에 관한 총체적인 설명이 가능한 근거이론 모형을 개발하였다. 연구결과를 요약하면, 의료정보에 대한 민감성과 기술의 발전이 의료정보 프라이버시 염려를 유발하고, 의사와 기술에 대한 신뢰도에 따라 연구 참여자 사이에 프라이버시 침해 대응 전략과 EHR 시스템 도입에 관한 입장이 달라진다. 지금까지 국내에서 EHR 시스템에 초점을 두고 의료정보 프라이버시에 대한 심층적인 분석을 수행한 연구가 없기 때문에 본 연구는 학술적으로 기여하는 바가 있고, 프라이버시 염려를 완화시킬 수 있는 실질적인 방안을 제시한다는 점에서 실무적 함의가 있다.

고객의 투자상품 선호도를 활용한 금융상품 추천시스템 개발 (Financial Products Recommendation System Using Customer Behavior Information)

  • 김효중;김성범;김희웅
    • 경영정보학연구
    • /
    • 제25권1호
    • /
    • pp.111-128
    • /
    • 2023
  • 인공지능(AI) 기술이 발전함에 따라 빅데이터 기반의 상품 선호도 추정 개인화 추천시스템에 관심이 증가하고 있는 추세이다. 하지만 개인화 추천이 적합하지 않은 경우 고객의 구매 의사를 감소시키고 심지어 금융상품의 특성상 막대한 재무적 손실로 확대될 수 있는 위험을 가지고 있다. 따라서 고객의 특성과 상품 선호도를 포괄적으로 반영한 추천시스템을 개발하는 것이 비즈니스 성과 창출과 컴플라이언스 이슈 대응에 매우 중요하다. 특히 금융상품의 경우 개인의 투자성향과 리스크 회피도에 따라 고객의 상품 선호도가 구분되므로 축적된 고객 행동 데이터를 활용하여 맞춤형 추천서비스를 제안하는 것이 필요하다. 이러한 고객의 행동 특성과 거래 내역 데이터를 사용하는 것뿐만 아니라, 고객의 인구통계정보, 자산정보, 종목 보유 정보를 포함하여 추천 시스템의 콜드 스타트 문제를 해결하고자 한다. 따라서, 본 연구는 고객의 거래 로그 기록을 바탕으로 고객의 투자성향과 같은 특성 정보와 거래 내역 및 금융상품 정보를 통해 고객별 금융상품 잠재 선호도를 도출하여 딥러닝 기반의 협업 필터링을 제안한 모형이 가장 성능 우수한 것을 확인하였다. 본 연구는 고객의 금융 투자 메커니즘을 기반으로 금융상품 거래 데이터를 통해 미거래 금융상품에 대한 예상 선호를 도출하는 추천 모델을 구축하여, 선호가 높을 것으로 예상되는 상위 상품군을 추천하는 서비스를 개발하는 것에 의의가 있다.

아파치 엘라스틱서치 기반 로그스태시를 이용한 보안로그 분석시스템 (A Security Log Analysis System using Logstash based on Apache Elasticsearch)

  • 이봉환;양동민
    • 한국정보통신학회논문지
    • /
    • 제22권2호
    • /
    • pp.382-389
    • /
    • 2018
  • 최근 사이버 공격은 다양한 정보시스템에 심각한 피해를 주고 있다. 로그 데이터 분석은 이러한 문제를 해결하는 하나의 방법이다. 보안 로그 분석시스템은 로그 데이터 정보를 수집, 저장, 분석하여 보안 위험에 적절히 대처할 수 있게 한다. 본 논문에서는 보안 로그 분석을 위하여 분산 검색 엔진으로 사용되고 있는 Elasticsearch와 다양한 종류의 로그 데이터를 수집하고 가공 및 처리할 수 있게 하는 Logstash를 사용하여 보안 로그 분석시스템을 설계하고 구현하였다. 분석한 로그 데이터는 Kibana를 이용하여 로그 통계 및 검색 리포트를 생성하고 그 결과를 시각화할 수 있게 하였다. 구현한 검색엔진 기반 보안 로그 분석시스템과 기존의 Flume 로그 수집기, Flume HDFS 싱크 및 HBase를 사용하여 구현한 보안 로그 분석시스템의 성능을 비교 분석하였다. 실험 결과 Elasticsearch 기반의 로그 분석시스템을 사용할 경우 하둡 기반의 로그 분석시스템에 비하여 데이터베이스 쿼리 처리시간 및 로그 데이터 분석 시간을 현저하게 줄일 수 있음을 보였다.