• 제목/요약/키워드: man-machine system

검색결과 412건 처리시간 0.036초

Non-Contact Line-of-sight Detection using Color Contact Lens for Man-Machine Interface

  • Nishiuchi, Nobuyuki;Kurihara, Kenzo;Takada, Hajime
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.391-394
    • /
    • 1998
  • The man-machine interface Is an important factor in the computer system, and it is thought that line-of-sight (LOS) detection technology will allow significant advances in this field. Techniques for detecting LOS for use in human interfaces have been studied[1][2]. In earlier studies, however, LOS was detected with a head piece, goggles, or through fixing the position of the head. The limitations imposed by these fixed conditions render them unsuitable far use in interfaces, as they have adverse mental or physical effects on humans. Therefore. they have not been sufficiently developed for practical application. Research on non-contact LOS detection is expected to result in a usable LOS man-machine interface[3][4], and the current study is intended to be a step in that direction. The authors used color contact lenses for LOS detection, and applied this new method to a computer interface. The use of color contact lenses simplifies image processing. The algorithm used in this study is sufficiently accurate for practical applications. This technique can be used in input devices, in virtual reality applications, and in human engineering research.

  • PDF

A Quantitative Model of System-Man Interaction Based on Discrete Function Theory

  • Kim, Man-Cheol;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제36권5호
    • /
    • pp.430-449
    • /
    • 2004
  • A quantitative model for a control system that integrates human operators, systems, and their interactions is developed based on discrete functions. After identifying the major entities and the key factors that are important to each entity in the control system, a quantitative analysis to estimate the recovery failure probability from an abnormal state is performed. A numerical analysis based on assumed values of related variables shows that this model produces reasonable results. The concept of 'relative sensitivity' is introduced to identify the major factors affecting the reliability of the control system. The analysis shows that the hardware factor and the design factor of the instrumentation system have the highest relative sensitivities in this model. T도 probability of human operators performing incorrect actions, along with factors related to human operators, are also found to have high relative sensitivities. This model is applied to an analysis of the TMI-2 nuclear power plant accident and systematically explains how the accident took place.

고 정밀 캠 프로파일 CNC 연삭기용 CAD/CAM 시스템 개발에 관한 연구 (A Study on the Development of CAD/CAM System for High Precision Cam Profile CNC Grinding Machine)

  • 임상헌;정종윤;이춘만
    • 한국공작기계학회논문집
    • /
    • 제15권5호
    • /
    • pp.44-50
    • /
    • 2006
  • Cam mechanisms are one of the most popular devices for generating irregular motion and are widely used in many automatic equipments, such as textile machinery, internal combustion engines and other automatic devices. In order to obtain the positive motion of follower by rotating cam, its shape should be correctly designed and manufactured. In present paper, a CAD/CAM system is developed for shape design of disk cams using relative velocity method and NC code generation using the biarc curve interpolation. And, a disk cam is successfully manufactured by the developed CAD/CAM system. Thus, it is shown that the developed CAD/CAM system can be used for high precision cam profile CNC grinding machine.

Wearable sensor network system for walking assistance

  • Moromugi, Shunji;Owatari, Hiroshi;Fukuda, Yoshio;Kim, Seok-Hwan;Tanaka, Motohiro;Ishimatsu, Takakazu;Tanaka, Takayuki;Feng, Maria Q.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2138-2142
    • /
    • 2005
  • A wearable sensor system is proposed as a man-machine interface to control a device for walking assistance. The sensor system is composed of small sensors to detect the information about the user's body motion such as the activity level of skeletal muscles and the acceleration of each body parts. Each sensor includes a microcomputer and all the sensors are connected into a network by using the serial communication function of the microcomputer. The whole network is integrated into a belt made of soft fabric, thus, users can put on/off very easily. The sensor system is very reliable because of its decentralized network configuration. The body information obtained from the sensor system is used for controlling the assisting device to achieve a comfortable and an effective walking training.

  • PDF

원자력 발전소 주제어실 사례를 통한 특수공간 디자인에 관한 기초적 연구 (Nuclear Power Plants' Main Control Room Case analysis for Specialized Space Design)

  • 이승훈;백승경;이상호
    • 한국실내디자인학회논문집
    • /
    • 제16권5호
    • /
    • pp.81-88
    • /
    • 2007
  • Energy consumption has been increased world widely, and the energy retain is one of the most important economic alternatives. These tendencies expand the nuclear power plants not only quantitatively but also qualitatively. Despite of the increasing construction of nuclear power plants and related facilities, every system in main control room(MCR) has been designed and administered solely based on the safety-first principles because of the specificity of nuclear industry. However, recent main control rooms started with the concept that the operators' performance could be optimized though the organic interrelation between human, machine, and environments. Now, it has been recognised in the scope of Ergonomics and Space Design which acknowledge our living spaces as Man-Environment Interface and this change connotes the MCR spaces should be special spaces rather than ordinary spaces. This research investigated domestic and foreign nuclear power plants' MCRs to suggest basic alternatives which can be applied to future MCR. With the review of characteristics of MCR, an integration of interior design, lighting and Ergonomics was explored and classified as types. Futhermore, the classification of environmental characteristics within the relationships between human, machine, and environments was developed through the case analysis of nuclear power plants. The results of this study will provide a basis of space design for system environments that the high level of safety and function are extremely important.

인간-기계 시스템 모델에 의한 크레인 사망재해 분석 (Analysis of Crane Accidents by Using a Man-Machine System Model)

  • 박재희;박태주;임현교;서은홍
    • 한국안전학회지
    • /
    • 제22권2호
    • /
    • pp.59-66
    • /
    • 2007
  • As the need of handling heavy materials increases, various cranes are used in industries. However, the effectiveness of crane also entails industrial accidents such as falling, constriction etc. In fact, the number of fatal accidents caused by crane is still high in Korea. To find out the causes of the accidents in terms of human error, we developed a man-machine system model that consists of two axes; human information processing and crane life cycle. In the human information processing dimension, we simplified it as five functions; sensing and perception, decision making and memory, response etc. In the crane life cycle dimension, we divided it into nine phases; design, production, operation etc. For the 152 fatal accident records during 1999-2006 years, we classified them into 45 cells made by two axes. Then we identified the preceding causes of the classified crane accident based on performance shaping factors. As the results of statistical analysis, the overall trend of crane fatal accidents was described. For the cause analysis, wrong decision making in work plan phase shows the highest frequency. Next, the poor information input in crane operation followed in accident frequency. In ergonomics view, the problems of interface design in displays and controls made 11.8% of fatal accidents. Following the analysis, several ergonomic design guidelines to prevent crane accidents were suggested.

베어링 시스템에서 결함을 초기에 진단하는 방법 (Early Detection of Faults in a Ball Bearing System)

  • 최영철;김양한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1102-1107
    • /
    • 2000
  • The signals that can be obtained from a rotating machine often convey the information of machine. For example, if the machine under investigation has faults, then we can measure the signal which has a pulse train, embedded in noise. Therefore the ability to detect the fault signal in noise determines the degree of diagnosis level of rotating machine. In this paper, minimum variance cepstrum (MV cepstrum), which can easily detect impulse in noise, has been applied to detect the type of faults of ball bearing system. To test the performance of this technique, experiment has been performed for ball bearing elements that have man made faults. Results show that minimum variance cepstrum can easily detect the periodicity due to faults.

  • PDF

공작기계용 45,000rpm 주축의 정.동적 해석과 강성평가 (The Static and Dynamic Analysis of a 45,000rpm Spindle for a Machine Tool and Evaluation of Its Stiffness)

  • 김동현;이춘만
    • 한국정밀공학회지
    • /
    • 제28권4호
    • /
    • pp.422-426
    • /
    • 2011
  • The spindle system is very important unit for the product accuracy in machine tools. A spindle system is designed by using the angular contact ceramic ball bearings, built-in motor, oil-air lubrication method and oil jacket cooling method. The static and dynamic analysis and stiffness evaluation of 45,000rpm spindle for machine tool has been investigated. Using a finite element method, we obtained some analyzed a static and dynamic characteristics of a spindle, such as natural frequency, harmonic analysis and we got the value of compliance through it. We evaluated stiffness by taking the inverse this value. A 45,000rpm spindle is successfully developed using the results.

프로파일링 데이터를 이용한 가상기계 코드 최적화 (Virtual Machine Code Optimization using Profiling Data)

  • 신양훈;이창환;오세만
    • 정보처리학회논문지A
    • /
    • 제14A권3호
    • /
    • pp.167-172
    • /
    • 2007
  • 가상기계(Virtual Machine)는 소프트웨어로 제작되어 논리적인 시스템 구성을 갖는 컴퓨터이기 때문에 그 수행 속도와 필요 저장 공간 측면에서 성능이 떨어질 수밖에 없다. 이러한 환경에서의 가상기계 코드 최적화는 실행 성능을 향상시킬 수 있기에 중요하다. 특별히 임베디드 장치(Embedded Device)에서 작동하는 가상기계 환경에서의 최적화는 기존의 최적화에 비해 수행 비용 대비 효과에서 높은 효율을 요구한다. 이에 따라 프로파일링을 통하여 성능에 크게 영향을 주는 함수 또는 기본 블록(Basic Block)을 찾아 최적화하는 것이 효과적이다. 본 논문에서는 프로파일링을 이용한 가상기계 코드 최적화기를 설계하고 구현하였다. 먼저, 가상기계 코드 최적화를 위해 코드를 실행하여 얻을 수 있는 동적 정보인 프로파일링 데이터(Profiling Data)를 정의하였고, 프로파일링 정보를 이용한 가상기계 코드 최적기를 구현하였다. 또한, 구현과 실험에 있어서 가상기계 코드는 EVM(Embedded Virtual Machine)의 중간 언어인 SIL(Standard Intermediate Language)를 사용하였고, 구현된 최적화기에 대한 실험을 통해 최적화기의 효과를 확인하였다.