• 제목/요약/키워드: man-machine(Human)

Search Result 155, Processing Time 0.027 seconds

A Study on Safety Assessment and Design of the Safe Task in Automated Man-Machine System (자동생산체계에서 인간-기계 시스템의 안전도측정과 안전작업설계에 관한 연구)

  • 오영진
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.13 no.22
    • /
    • pp.71-78
    • /
    • 1990
  • Some problems to assess the safety of automated man-machine system are studied in many ways. The difficulty occurred in this system is the vagueness of human behavior. Fuzzy set theory is used to assess the human behavior in safety analysis. The unsafe behavior listed top 10 in accident statistics would be explained as the factors of human vagueness. Three cases are considered, which consist of man-machine system as man-man, man-machine, machine-machine types. For the design of safe task, using characteristics of work performance, each motion cycle time is required to know the rate of learning. Approach of human behavior to the standard motion means more safe motion. It is important to design the works as to minimize the time performance to the standard motion's, which utilize the control of risk potential with easy. In that process, use of fuzzy set theory is appropriate to analyze the human behavior to identify its vagueness.

  • PDF

Man-machine control system analysis (Man-Machine 제어시스템 분석)

  • 이상훈;최중락;김영수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.394-397
    • /
    • 1987
  • This paper presents an analysis of the man-machine control system. A man-machine system depends on the performance of a human operator for proper operation. The analysis method is based upon the assumption that human operator will act in a near optimal controller. Optimal control theory and its associated state space representation is used as the basis for the analytic procedure. The computer simulation for a given plant shows that plant parameters have limited range by the human operator.

  • PDF

Development of An Integrated Test Facility (ITF) for the Advanced Man Machine Interface Evaluation

  • Oh, In-Seok;Cha, Kyung-Ho;Lee, Hyun-Chul;Sim, Bong-Sick
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.117-122
    • /
    • 1995
  • An Integrated Test Facility(ITF) is a human factors experimental environment to evaluate an advanced man machine interface(MMI) design. The ITF includes a human machine simulator(HMS) comprised of a nuclear power plant function simulator, man-machine interface, experiment control station for the experiment control and design, human behavioural data measurement system, and data analysis and experiment evaluation supporting system(DAEXESS). The most important features of ITF is to secure the flexibility and expandibility of Man Machine Interlace(MMI) design to change easily the environment of experiments to accomplish the experiment's objects In this paper, we describe a development scope and characteristics of the ITF such as, hardware and software development scope and characteristics, system thermohydraulic modelling characteristics, and experiment station characteristics for the experiment variables design and control, to be used as an experiment environment for the evaluation of VDU-based control room.

  • PDF

Analysis of Workforce Scheduling Using Adjusted Man-machine Chart and Simulation (보완 다중 활동 분석표와 시뮬레이션을 이용한 작업자 운영 전략 분석)

  • Hyowon Choi;Heejae Byeon;Suhan Yoon;Bosung Kim;Soondo Hong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.1
    • /
    • pp.20-27
    • /
    • 2024
  • Determining the number of operators who set up the machines in a human-machine system is crucial for maximizing the benefits of automated production machines. A man-machine chart is an effective tool for identifying bottlenecks, improving process efficiency, and determining the optimal number of machines per operator. However, traditional man-machine charts are lacking in accounting for idle times, such as interruptions caused by other material handling equipment. We present an adjusted man-machine chart that determines the number of machines per operator, incorporating idleness as a penalty term. The adjusted man-machine chart efficiently deploys and schedules operators for the hole machining process to enhance productivity, where operators have various idle times, such as break times and waiting times by forklifts or trailers. Further, we conduct a simulation validation of traditional and proposed charts under various operational environments of operators' fixed and flexible break times. The simulation results indicate that the adjusted man-machine chart is better suited for real-world work environments and significantly improves productivity.

Tactile Sensation Display with Electrotactile Interface

  • Yarimaga, Oktay;Lee, Jun-Hun;Lee, Beom-Chan;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.145-150
    • /
    • 2005
  • This paper presents an Electrotactile Display System (ETCS). One of the most important human sensory systems for human computer interaction is the sense of touch, which can be displayed to human through tactile output devices. To realize the sense of touch, electrotactile display produces controlled, localized touch sensation on the skin by passing small electric current. In electrotactile stimulation, the mechanoreceptors in the skin may be stimulated individually in order to display the sense of vibration, touch, itch, tingle, pressure etc. on the finger, palm, arm or any suitable location of the body by using appropriate electrodes and waveforms. We developed an ETCS and investigated effectiveness of the proposed system in terms of the perception of roughness of a surface by stimulating the palmar side of hand with different waveforms and the perception of direction and location information through forearm. Positive and negative pulse trains were tested with different current intensities and electrode switching times on the forearm or finger of the user with an electrode-embedded armband in order to investigate how subjects recognize displayed patterns and directions of stimulation.

  • PDF

Consideration of Human Operators in Man-Machine Systems

  • Jin, Jae-Hyun;Ahn, Sung-Ho;Park, Byung-Suk;Yoon, Ji-Sup;Jung, Jae-Hoo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2471-2474
    • /
    • 2003
  • This paper focuses on the stability and operability of a man-machine system considering a human operator. Some papers' main interest has been the stability only, but the operability such as fatigue is also the other main interest. In a man-machine system, feelings such as motional, visual, and kinesthetic are important since those enable operators to work easily or fatigue operators. A model of a man-machine system has been developed. Motional, visual, and kinesthetic feelings may be considered as feedbacked sensor signals. We also have quantified the degree of fatigue with respect to reference operation. This is a performance index to be optimized. Several methods are presented to optimize the degree of fatigue and the stability of the integrated system. Examples are presented to show that the usefulness of the proposed modeling method and fatigue mitigating algorithm.

  • PDF

Informative Approach for Optimal Control Policy of Man-Machine System (인간-기계시스템의 최적관리를 위한 정보이론적 접근)

  • 이태희
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.37
    • /
    • pp.63-70
    • /
    • 1996
  • This paper presents a model which may be used in optimal control of the Man-Machine systems in the aspect of information transmission. For this, we divided information into human parts and machine parts, and consider minimum error principle as a machine operating logic. Furthermore, we take the maximum information principle as a human information operating logic. This can be done in considering the Fisher Information and its transformed type, information inequality.

  • PDF

A study of human operator dynamics measurement using pseudo-random binary signals (의사랜덤 신호에 의한 휴먼 오퍼레이터의 동특성 측정)

  • Sang Hui Park
    • 전기의세계
    • /
    • v.20 no.3
    • /
    • pp.8-16
    • /
    • 1971
  • The proper design of man-machine systems requires as much understanding of the human element as of the machine. Although the modern systems engineer can obtain a very high degree of repeatability and accuracy for the characteristics of a machine, these of the human elements are much less well known. Due to the complexity and importance of modern man-machine systems, this difficult problem has recently received increasing attention. In this paper, the dynamic characteristics of the human operator have been newly determined by impulse estimation using Pseuo-random binnary signals as a test signal and the quasi-linear human operator models used as an element of a closed-loop control system adopted from McRuer & Krendel and Bekey. Also the techniques and instruments are presented for correlating the actual characteristics of the constructed system with anticipated theoretical values. Consequently, in spite of many problems remain yet, experimental results were very satisfactory.

  • PDF

A Modification of Human Error Analysis Technique for Designing Man-Machine Interface in Nuclear Power Plants (원자력 발전소 주제어실 인터페이스 설계를 위한 인적오류 분석 기법의 보완)

  • Lee, Yong-Hui;Jang, Tong-Il;Im, Hyeon-Gyo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.31-42
    • /
    • 2003
  • This study describes a modification of the technique for human error analysis in nuclear power plants (NPPs) which adopts advanced Man-Machine Interface (MMI) features based on computerized working environment, such as LCOs. Flat Panels. Large Wall Board, and computerized procedures. Firstly, the state of the art on human error analysis methods and efforts were briefly reviewed. Human error analysis method applied to NPP design has been THERP and ASEP mainly utilizing Swain's HRA handbook, which has not been facilitated enough to put the varied characteristics of MMI into HRA process. The basic concepts on human errors and the system safety approach were revisited, and adopted the process of FMEA with the new definition of Error Segment (ESJ. A modified human error analysis process was suggested. Then, the suggested method was applied to the failure of manual pump actuation through LCD touch screen in loss of feed water event in order to verify the applicability of the proposed method in practices. The example showed that the method become more facilitated to consider the concerns of the introduction of advanced MMI devices, and to integrate human error analysis process not only into HRA/PRA but also into the MMI and interface design. Finally, the possible extensions and further efforts required to obtain the applicability of the suggested method were discussed.

A study on man-machine system evaluation (인간-기계시스템의 평가에 관한 연구)

  • 이상도;정중희;이동춘
    • Journal of the Ergonomics Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.11-16
    • /
    • 1983
  • In designing a man-machine system(machines, work surfaces, work places, etc.), human's internal and external characteristics should be considered. But the resulting system may not be perfect, and many idiosyncratic and situational errors occur while operating. The entropy model with the limited data is known as a useful method to verify the internal system status. This paper shows a quantitative method to describe the system compatability between man and machine by entropy model and error data.

  • PDF