• Title/Summary/Keyword: malic acid ($C_4H_6O_5$)

Search Result 10, Processing Time 0.027 seconds

Influence of the Heat-treatment Temperature on the Critical Properties of $C_4H_6O_5$-doped $MgB_2/Fe$ Wire ($C_4H_6O_5$ 도핑된 $MgB_2/Fe$ 선재의 임계특성에 대한 열처리 온도의 영향)

  • Jun, Byung-Hyuk;Kim, Jung-Ho;Dou, Shi Xue;Kim, Chan-Joong
    • Progress in Superconductivity
    • /
    • v.9 no.1
    • /
    • pp.62-67
    • /
    • 2007
  • The effects of the heat-treatment temperature on the carbon (C) substitution amount, full width at half maximum (FWHM) value, critical temperature ($T_c$), critical current density ($J_c$) have been investigated for 10 wt % malic acid ($C_4H_6O_5$)-doped $MgB_2/Fe$ wires. All the samples were fabricated by the in-situ powder-in-tube (PIT) method and heat-treated within a temperature range of $650^{\circ}C$ to $1000^{\circ}C$. As the heat-treatment temperature increased, it seemed that the lattice distortion was increased by a more active C substitution into the boron sites from the malic acid addition. These increased electron scattering defects seemed to enhance the $J_c-H$ properties in spite of an improvement in the crystallinity, such as a decrease of the FWHM value and an increase of the $T_c$. Compared to the un-doped wire heat-treated at $650^{\circ}C$ for 30 min, the $J_c$ was enhanced by the C doping in a high-field regime. The wire heat-treated at $900^{\circ}C$ resulted in a higher magnetic $J_c$ of approximately $10^4\;A/cm^2$ at 5 K and 8 T.

  • PDF

Leaching of Valuable Metals from NCM Cathode Active Materials in Spent Lithium-Ion Battery by Malic acid (폐리튬이온전지 NCM 양극활물질로부터 말릭산을 이용한 유가금속의 침출)

  • Son, Seong Ho;Kim, Jin Hwa;Kim, Hyun-Jong;Kim, Sun Jung;Lee, Man Seung
    • Resources Recycling
    • /
    • v.23 no.4
    • /
    • pp.21-29
    • /
    • 2014
  • Nickel, cobalt and manganese-based(NCM, $Li(Ni_xCo_yMn_z)O_2$) cathode active materials of spent lithium-ion batteries contained valuable metals such as cobalt(15 ~ 20%), nickel(25 ~ 30%), manganese(10 ~ 15%) and lithium(5 ~ 10%). It was investigated the eco-friendly leaching process for the recovery of valuable metal from spent lithium-ion battery NCM cathode active materials by DL-malic acid($C_4H_5O_6$) as an organic leachant in this research. The experiments were carried out to optimize the process parameters for the recovery of cobalt, nickel and lithium by varying the concentration of lixivant, reductant concentration, solid/liquid ratio and temperature. The leaching solution was analyzed using ICP-OES(Inductively Coupled Plasma Optic Emission Spectrometer). Cathode active materials of 5 wt. % were introduced into the leaching solution which was 2 M DL-malic acid in addition of 5 vol. % $H_2O_2$ at $80^{\circ}C$ and it resulted in the recovery of 99.10% cobalt, 99.80% nickel and 99.75% lithium in 120 min. $H_2O_2$ in DL-malic acid solution acts as an effective reducing agents, which enhance the leaching of metals.

Quality Characteristics of Kiwi Wine and Optimum Malolactic Fermentation Conditions (참다래 와인의 최적 malolactic fermentation 조건과 품질 특성)

  • Kang, Sang-Dong;Ko, Yu-Jin;Kim, Eun-Jung;Son, Yong-Hwi;Kim, Jin-Yong;Seol, Hui-Gyeong;Kim, Ig-Jo;Cho, Hyoun-Kook;Ryu, Chung-Ho
    • Journal of Life Science
    • /
    • v.21 no.4
    • /
    • pp.509-514
    • /
    • 2011
  • Maloactic fermentation (MLF) occurs after completion of alcoholic fermentation and is mediated by lactic acid bacteria (LAB), mainly Oenococcus oeni. Kiwi wine more than commercial grape wine has the problem of high acidity. Therefore, we investigated the optimal MLF conditions for regulating strong acidity and improving the quality properties of wine fermented with Kiwi fruit cultivated in Korea. For alcohol fermentation, industrial wine yeast Saccharomyces cerevisiae KCCM 12650 strains and LAB, known as MLF strains, were used to alleviate wine acidity. First, the various experimental conditions of Kiwi fruit, initial pH (2.5, 3.5, 4.5), fermenting temperature (20, 25, $30^{\circ}C$), and sugar contents (24 $^{\circ}Brix$), were adjusted, and after the fermentation period, we measured the acidity, pH, and the change in organic acid content by the AOAC method and HPLC analysis. The alcohol content of fermented Kiwi wine was 12.75%. Further, total acidity and pH of Kiwi wine were 0.78% and 3.5, respectively. Total sugar and total polyphenol contents of Kiwi wine were 38.72 mg/ml and 60.18 mg/ml, respectively. With regard to organic acid content, the control contained 0.63 mg/ml of oxalic acid, 2.99 mg/ml of malic acid, and 0.71 mg/ml of lactic acid, whereas MLF wine contained 0.69 mg/ml of oxalic acid, 0.06 mg/ml of malic acid, and 3.12 mg/ml of lactic acid. Kiwi wine had lower malic acid values and total acidity than control after MLF processing. In MLF, the optimum initial pH value and fermentation temperature were 3.5 and $25^{\circ}C$, respectively. Therefore, these studies suggest that establishment of optimal MLF conditions could improve the properties of Kiwi wine manufactured in Korea.

Optimum Fermentation Conditions and Fermentation Characteristics of Mulberry (Morus alba) Wine (오디(Morus alba) 와인의 최적 발효조건 및 발효 특성)

  • Kim, Yong-Suk;Jeong, Do-Yeong;Shin, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.63-69
    • /
    • 2008
  • For the development of mulberry wine, we investigated its optimum fermentation conditions as well as quality changes during fermentation. The physicochemical characteristics of the mulberry fruit used in the study were pH 4.56, 0.50% titratable acidity, and 13.0 $^{circ}Brix$ soluble solids. The mulberry wine fermented with Saccharomyces cerevisiae KCCM 12224 (Sc-24) at 24 $^{circ}Brix$ soluble solids and $26^{circ}C$ showed excellent characteristics in terms of ethanol production, titratable acidity, and redness. The sucrose, fructose, and glucose contents of the mulberry wine drastically decreased with fermentation time. The citric acid content was maintained during the fermentation period, and malic acid decreased, but lactic and succinic acids increased. The cyanidin-3-glucoside content, a major anthocyanin pigment, of the mulberry wine drastically decreased from 195.5 mg% at the initial stage of fermentation to 15.37 mg% at 2 days of fermentation. However, cyanidin-3-rutinoside decreased gradually. In summary, a mulberry wine of high quality was made by fermentation for 8 days at $26^{\circ}C$ using mashed mulberry fruit containing $24^{\circ}Brix$ soluble solids, after adding 200 ppm $K_2S_2O_5$ and inoculating with 3%(v/v) Sc-24.

Progress in $MgB_2$ Superconductor Wires and Tapes

  • Kim, Jung-Ho;Kumakura, Hiroaki;Rindflesich, Matthew;Dou, Shi Xue;Hwang, Soo-Min;Joo, Jin-Ho
    • Progress in Superconductivity
    • /
    • v.12 no.2
    • /
    • pp.75-81
    • /
    • 2011
  • We report on the progress that has been made in developing $MgB_2$ superconducting wires and tapes for commercialization and research efforts. A number of techniques have been developed to overcome the obstacle posed by the poor critical current density ($J_c$) of pristine $MgB_2$. Chemical doping has proved to be the effective way to modify and enhance the superconducting properties, such as the $J_c$ and the irreversibility field ($B_{irr}$). More than 100 different types of dopants have been investigated over the past 8 years. Among these, the most effective dopants have been identified to be SiC and malic acid ($C_4H_6O_5$). The best results, viz. a $B_{irr}$ of 22 T and $J_c$ of $30,000\;A{\cdot}cm^{-2}$ at 4.2 K and 10 T, were reported for malic acid doped $MgB_2$ wires, which matched the benchmark performance of commercial low temperature superconductor wires. In this work, we discuss the progress made in $MgB_2$ conductors over the past few years at the University of Wollongong, Hyper Tech Research, Inc., and Ohio State University.

The Effect of Low-Temperature Carbon Encapsulation on Si Nanoparticles for Lithium Rechargeable Batteries

  • Jung, Jaepyeong;Song, Kyeongse;Kang, Yong-Mook
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2162-2166
    • /
    • 2013
  • The tailored surface modification of electrode materials is crucial to realize the wanted electronic and electrochemical properties. In this regard, a dexterous carbon encapsulation technique can be one of the most essential preparation methods for the electrode materials for lithium rechargeable batteries. For this purpose, DL-malic acid ($C_4H_6O_5$) was here used as the carbon source enabling an amorphous carbon layer to be formed on the surface of Si nanoparticles at enough low temperature to maintain their own physical or chemical properties. Various structural characterizations proved that the bulk structure of Si doesn't undergo any discernible change except for the evolution of C-C bond attributed to the formed carbon layer on the surface of Si. The improved electrochemical performance of the carbon-encapsulated Si compared to Si can be attributed to the enhanced electrical conductivity by the surface carbon layer as well as its role as a buffering agent to absorb the volume expansion of Si during lithiation and delithiation.

Preparation of Powdered Smoked-Dried Mackerel Soup and Its Taste Compounds (고등어분말수우프의 제조 및 정미성분에 관한 연구)

  • LEE Eung-Ho;OH Kwang-Soo;AHN Chang-Bum;CHUNG Bu-Gil;BAE You-Kyung;HA Jin-Hwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.1
    • /
    • pp.41-51
    • /
    • 1987
  • This study was carried out to prepare powdered smoked-dried mackerel which can be used as a soup base, and to examine storage stability and the taste compounds of Products. Raw mackerel are filleted, toiled for 10 minutes and pressed to remove lipids, and then soaked in extract solution of skipjack meat. This soaked mackerel are smoked 3 times to $10-12\%$ moisture content at $80^{\circ}C$ for 8 hours. And the smoked-dried mackerel were pulverized to 50 mesh. Finally, the powdered smoked-dried mackerel were packed in a laminated film $bag(PET/Al\;foil/CPP:\;5{\mu}m/15{\mu}m/70{\mu}m,\;15\times17cm)$ with air(product C), nitrogen(product N) and oxygen absorber(product O), and then stored at room temperature for 100 days. The moisture and crude lipid content of powdered smoked-dried mackerel was $11.3-12.3\%,\;12\%$, respectively, and water activity is 0.52-0.56. And these values showed little changes during storage. The pH, VBN and amino nitrogen content increased slowly during storage. Hydrophilic and lipophilic brown pigment formation showed a tendency of increase in product(C) and showed little change in product(N) and (O). The TBA value, peroxide value and carbonyl value of product(N) and (O) were lower than those of product (C). The major fatty acids of products were 16:0, 18:1, 22:6, 18:0 and 20:5, and polyenoic acids decreased, while saturated and monoenoic acids increased during processing and storage of products. The IMP content in products were 420.2-454.2 mg/100 g and decreased slightly with storage period. And major non-volatile organic acids in products were lactic acid, succinic acid and $\alpha-ketoglutaric$ acid. In free amino acids and related compounds, major ones are histidine, alanine, hydroxyproline, lysine, glutamic acid and anserine, which occupied $80.8\%$ of total free amino acids. The taste compounds of powdered smoked-dried mackerel were free amino acids and related compounds (1,279.4 mg/100 g), non-volatile organic acids(948.1 mg/100 g), nucleotides and their related compounds (672.8 mg/100 g), total creatinine(430.4 ntg/100 g), tetaine(86.6 mg/100 g) and small amount of TMAO. The extraction condition of powdered smoked-dried mackerel in preparing soup stock is appropriate at $100^{\circ}C$ for 1 minute. Judging from the results of taste and sensory evaluation, it is concluded that the powdered smoked-dried mackerel can be used as natural flavoring substance in preparing soups and broth.

  • PDF

A Study on the Making of Sweet Persimmon (Diospyros kaki, T) Wine (단감(Diospyros kaki, T) 와인 제조에 관한 연구)

  • Cho, Kye-Man;Lee, Jung-Bock;Kahng, Goon-Gjung;Seo, Weon-Taek
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.785-792
    • /
    • 2006
  • The characteristics of alcohol fermentation using sweet persimmon juice were studied in static fermentation in an effort to develop new types of functional wine. The yeast strain Saccharomyces cerevisiae KCCM 12650 was selected for use in the fermentation of sweet persimmon juice. Attempts were made to modify the sweet persimmon juice in order to find suitable conditions for alcohol fermentation. The modified sweet persimmon juice (pH 4.0) that was most suitable for alcohol fermentation contained $24^{\circ}Brix$ of sugar supplemented with sucrose as a carbon source and 0.5 g/L of $(NH_4)_2HPO_4$ as a nitrogen source. After 5 days of fermentation at $25^{\circ}C$, 12.8% of alcohol was produced from the modified juice and its pH was slightly decreased to 3.9. Browning of the wine was observed during storage due to the oxidation of phenolic compounds. The initial browning of 0.08% at $OD_{420}$ after fermentation increased to 0.40 during storage for 11 weeks at room temperature. The addition of $K_2S_2O_5$ was effective in delaying the browning of the wine. The browning of the wine decreased to 0.25 at $OD_{420}$ with the addition of 200 mg/L of $K_2S_2O_5$. The wine produced in this study contained some organic acids such as malic acid (6.82% g/L) and succinic acid (1.40 g/L), some minerals such as $K^+$ (947.8 mg/L) and $Mg^{2+}$ (36.4 mg/L), as well as soluble phenolics (779 mg/L of gallic acid equivalent). Schisandra fruit was added to the sweet persimmon juice during alcohol fermentation in order to improve the sour taste and flavor. The best sensory quality (taste, flavor, and color) was obtained by adding 0.5% schisandra fruit.

Effect of Oyster Shell Powder on Soil pH and Growth and Yield of Apple (토양의 산도교정과 사과 생육에 대한 패화석 시용 효과)

  • Lee, Seong-Tae;Lee, Young-Han;Lee, Young-Jin;Lee, Chun-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.6
    • /
    • pp.383-387
    • /
    • 2004
  • Effects of oyster shell powder as a liming material were investigated in an apple orchard. Soil texture of the apple orchard was silty clay loam (Upyeong series with 7% of slope) and topsoil pH was 5.6. Treatments of 1,590 kg oyster shell powder $ha^{-1}$ and calcium-magnesium carbonate as much as oyster shell powder were included in the experiment. With treatments of oyster shell powder and calcium-magnesium carbonate, the length, number and diameter of new branches and the diameter of main, secondary and side branches increased in comparison with control. With oyster shell powder application, soil pH increased from 5.6 to 6.8 at the harvest. In addition, it increased exchangeable Ca from 2.6 to $4.2cmol_c\;kg^{-1}$. But it didn't make any difference in chlorophyll, sugar and malic acid contents. The apple weight per fruit of oyster shell powder application was 9 g more than that of control. Apple yield was highest ($37,000kg\;ha^{-1}$) in the oyster shell powder treatment, and the yield increase was significantly different at 5% level LSD. We concluded that the oyster shell powder can be an alternative of lime and effective to restore soil nutrient balance in apple orchard soil.