• Title/Summary/Keyword: male specific genes

Search Result 76, Processing Time 0.024 seconds

Sex Identification of Bovine Meat Using Male Specific SRY and ZFY Genes (웅성 특이적 SRY 및 ZFY 유전자를 이용한 쇠고기 성(性) 판별)

  • Shin, Sung-Chul;Chung, Ku-Young;Chung, Eui-Ryong
    • Food Science of Animal Resources
    • /
    • v.27 no.3
    • /
    • pp.351-356
    • /
    • 2007
  • The objective of this study was to develop a rapid and reliable method for the sex determination of beef using the PCR(polymerase chain reaction) technique. We have used two bovine sex determining genes, SRY and ZFY, on the Y-chromosome to identify the sex of Hanwoo and Holstein beet. We attempted to amplify 1,348 bp and 979 bp fragments from male and female genomic DNA corresponding to the SRY and ZFY genes, respectively, using male specific primers. The amplified PCR products were separated by electrophoresis in a 1.5% agarose gel to detect a male specific DNA band. When DNA from male beef was amplified with primers specific for the SRY gene, a DNA band of 1,348 bp was present in all of the male samples, but absent from all of the female samples. Also, when DNA from male beef was amplified with primers specific for the ZFY gene, a DNA band of 979 bp was observed in all of the male samples, but absent from all female samples. In conclusion, the bovine SRY and ZFY genes are typically found only in male beef. For the practical application of this method for the sexing of commercial beef at the processing and marketing stages after slaughter. a total of 350 beef samples collected randomly from local markets were analyzed for sex determination. The proportions of male and female samples were 252 (72%) and 98 (28%), respectively. Therefore. the SRY and ZFY genes. which are specific for the Y-chromosome, may be useful sex-diagnostic DNA markers to distinguish male meat from female meat.

Effect of Gender-Specific Adult Bovine Serum on Gene Expression During Myogenesis

  • Lee, Eun-Ju;Pokharel, Smritee;Kim, Jie-Hoe;Nam, Sang-Sup;Choi, In-Ho
    • Journal of Animal Science and Technology
    • /
    • v.54 no.3
    • /
    • pp.219-226
    • /
    • 2012
  • Gender specificity in muscle growth and development is well known. Genesis of muscle is dependent on proliferation and differentiation potential of resident myogenic satellite cells (MSCs) present in muscle fibers. Multipotential capacity of forming myocyte, osteocyte, and adipocyte like cell makes MSCs a unique stem cell. To understand the molecular mechanism involved in determination of muscle quality due to difference in hormone concentration of different gender of animals, MSCs were isolated from bovine skeletal muscle and cultured in male, female, and castrated serum supplemented media. DNA microarray used consisted of 24,000 spots with 70 mer oligo in each spot. A total of 88 genes were up-regulated and 551 genes were down-regulated by more than two fold. Among up-regulated gene, 33, 34, and 21 genes were found up-regulated in cells grown in male, female, and castrated serum, respectively. Interestingly, male serum showed 4, female 11 and castrated male showed 4 genes expressed highly in each gender. Further study on the highly up-regulated gene may unfold the mystery of gender specificity found in muscle development. Also, the identification of differentially expressed genes in gender-specific serum will add information on infrastructure of bovine genome research.

Identification of Sperm mRNA Biomarkers Associated with Sex-Determination in Korean Native Cows

  • Min, Kwan-Sik;Byambaragchaa, Munkhzaya;Kim, Hyun;Park, Myung-Hum
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.111-116
    • /
    • 2019
  • This study was conducted to analyze the specific genes associated with sex-determination in Korean native cow. The highly organized spermatogenesis requires accurate spatial and temporal regulation of gene expression, which is governed by transcriptional, post-transcriptional, and epigenetic processes. Recently, farmers have been interested in determining the sexual identity of the calves in their farm. We analyzed the sperm of Korean native and Holstein cows, which were supplied from Hanwoo Improvement Center. We evaluated sperm motility and expression of sperm-specific genes after treating semen with both male- and female reagents. Sperm motility in Korean native cows decreased by approximately 10% in the first 30 minutes after treatment with sex-determination reagent. However, sperm motility of Holstein cows decreased to 60-70% after 15 minutes and to 20-30% after 30 minutes. We selected six specific genes expressing in the spermatozoa to analysis the gene expression level. The Real-time PCR results suggest that the selected genes (Gimap4, Tmeff1, Rac2, Abi2, Rac1, and Clu) were highly expressed in the group treated with the male reagent compared to the group treated the female reagent and to the untreated-group (control). In the present study, we suggest that the selected genes play a pivotal role in sex-determination.

Studies on Isolaton of Y-specific DNA Marker and Development of Monoclonal H-Y Antibody for Embryo Sexing in Rabbit II. Sex Determination of Rabbit Embryo by PCR Amplified Y-specific DNA (Y 염색체 특이성 DNA분리와 단일 H-Y 항체 개발에 의한 토끼의 수정란 성 감별에 관한 연구 II. PCR을 이용한 Y 염색체 특이성 DNA의 증폭에 의한 토끼 수정란의 성 감별)

  • 박영일;임경순;한재용;남경우;황규춘;박화춘
    • Korean Journal of Animal Reproduction
    • /
    • v.20 no.2
    • /
    • pp.89-99
    • /
    • 1996
  • The purpose of this study was to develop the diagnosis techniques for sex determination of rabbit embryos at preimplantation stage. To detect male specific sequences using polymerase chain reaction, two genes functional on sex determination including SRY and ZFX/Y genes were targeted using multiple oligonucleotide primer sets. Three of them for conserved SRY gene were used for appropriate amplification pattern, and then only one primer set #3 proved to be most efficient, showing male-specific strong signal ofamplified sequences. Using this male specific bandsfrom human, cattle, pig and mouse, the gender of rabbit was determined. As an another system for sex determination system, amplified 910bp fragment from ZFX/Y was digested with several restriction endonuclease and showed gender specific restriction fragments only by Hinf I. Using two different system for sex identification of rabbit in this study, blind tests for 17 samples was conducted and showed identical results from two different methods. And then, amplification limit of PCR reaction for template DNA was estimated using various amounts of DNA for both SRY and ZFX/Y systems, resulted as 20pg and 800pg, respectively. With this results, test for gender identification of rabbit embryos were performed using SRY derived amplification system. From total 22 embryos selected for its developmental state 18 were identified as male embryos, showing significant difference from expected sex ratio 1:1. This biased sex ratio was interpreted as to have been caused by the fact, reported by the fact, reported by several researchers, that male embryos develop more rapidly and are more resistant against the in vitro manipulation than female embryos.

  • PDF

Identification of Female Specific Genes in the W Chromosome that are Expressed during Gonadal Differentiation in the Chicken

  • Rallabandi, Harikrishna Reddy;Yang, Hyeon;Jo, Yong Jin;Lee, Hwi Cheul;Byun, Sung June;Lee, Bo Ram
    • Korean Journal of Poultry Science
    • /
    • v.46 no.4
    • /
    • pp.287-296
    • /
    • 2019
  • Avian sex determination system involves the male ZZ and female ZW chromosomes. However, very few studies are reported the expression, functional role and importance of genes on the W chromosome because of its small and highly heterochromatic genomic regions. Recent studies demonstrated that the W chromosome may have critical roles in physiology, sex determination and subsequent sexual differentiation in chickens. Therefore, gene annotation, including describing the expression and function of genes in the chicken W chromosome, is needed. In this study, we have searched the W chromosome of chickens and selected a total of 36 genes to evaluated their specific expression in the testis and ovary at various developmental stages such as embryonic day 6 (E6), hatch and adult. Interestingly, out of 36 genes in chicken W chromosome, we have found seven female-specific expression at E6.5 day, indicating that they are functionally related to female chicken gonadal differentiation. In addition, we have identified the stage specific gene expression from the sex specific genes. Furthermore, we analyzed the relative location of genes in the chicken W chromosome. Collectively, these results will contribute molecular insights into the sexual determination, differentiation and female development based on the W chromosome.

The Study of X Chromosome Inactivation Mechanism in Klinefelter's Syndrome by cDNA Microarray Experiment

  • Jeong, Yu-Mi;Chung, In-Hyuk;Park, Jung Hoon;Lee, Sook-Hwan;Chung, Tae-Gyu;Kim, Yong Sung;Kim, Nam-Soon;Yoo, Hyang-Sook;Lee, Suman
    • Genomics & Informatics
    • /
    • v.2 no.1
    • /
    • pp.30-35
    • /
    • 2004
  • To investigate the XIST gene expression and its effect in a Klinefelter's patient, we used Klinefelter's syndrome (XXY) patient with azoospermia and also used a normal male (XY) and a normal female (XX) as the control, We were performed cytogenetic analysis, Y chromosomal microdeletion assay (Yq), semi-quantitative RT-PCR, and the Northern blot for Klinefelter's syndrome (KS) patient, a female and a male control, We extracted total RNA from the KS patient, and from the normal cells of the female and male control subjects using the RNA prep kit (Qiagen), cDNA microarray contained 218 human X chromosome-specific genes was fabricated. Each total RNA was reverse transcribed to the first strand cDNA and was labeled with Cy-3 and Cy-5 fluorescein, The microarray was scanned by ScanArray 4000XL system. XIST transcripts were detected from the Klinefelters patient and the female by RT-PCR and Northern blot analysis, but not from the normal male, In the cDNA microarray experiment, we found 24 genes and 14 genes are highly expressed in KS more than the normal male and females, respectively. We concluded that highly expressed genes in KS may be a resulted of the abnormal X inactivation mechanism.

Identification of Species and Sex of Korean Roe Deer (Capreolus pygargus tianschanicus) Using SRY and CYTB Genes

  • Han, Sang-Hyun;Cho, In-Cheol;Lee, Sung-Soo;Tandang, Leoncia;Lee, Hang;Oh, Hong-Shik;Kim, Byoung-Soo;Oh, Moon-You
    • Animal cells and systems
    • /
    • v.11 no.2
    • /
    • pp.165-168
    • /
    • 2007
  • The nucleotide sequences of a male-specific marker sex determining region Y (SRY) gene and a mitochondrial cytochrome B (CYTB) gene were characterized and analyzed to establish a molecular method for identification of species and sex of Korean roe deer (Capreolus pygargus tianschanicus). Similarity search result of SRY sequences showed very similar result to those reported in Moose (Alces alces) and Reindeer (Rangifer tarandus), both of which had 95.9% similarity in identity. CYTB genes were very similar to those reported in Siberian roe deer (C. pygargus pygargus) which had 98.6% similarity and not to European roe deer (C. capreolus), suggesting that the DNA samples tested were of Siberian roe deer lineage. Polymerase chain reaction (PCR)-based sex typing successfully discriminated between carcasses of male and female roe deer. Males had SRY band on agarose gels and females did not. The result of this molecular sex typing provided similar information with that obtained by genital organ observation. Therefore, this molecular method using male specific marker SRY and mitochondrial CYTB genes would be very useful for identification of the species and sex of the carcass remains of roe deer.

Human Y Chromosome: Structure, Function and Evolution (인간 Y 염색체: 구조, 기능 그리고 진화)

  • 홍경원;허재원;김희수
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.958-969
    • /
    • 2003
  • The human Y chromosome is strictly paternally inherited and does not X-Y crossing over during male meiosis in most of its length. Although this region came to be known as the non-recombining region Y (NRY), it was renamed as male-specific region Y (MSY) due to abundant recombination. The MSY is a mosaic of heterochromatic sequences and three classes of euchromatic sequences: X-transposed, X-degenerated and ampliconic. The X-transposed sequences exhibit 99% identity to the X chromosomal sequences. The X-degenerate sequences are remnants of ancient autosomes from which the modem X and Y chromosomes evolved. Eight palindromes of the ampliconic comprise one-quarter of the euchromatic DNA of the male-specific region of the human Y chromosome. They contain many testis-specific genes and typically exhibit 99.97% intra-palindromic (arm-to-arm) sequence identity. The arms of these palindromes must have subsequently engaged in gene conversion, driving the pair arms to evolve it concert. Averages of approximately 600 nucleotides per newborn male have undergone Y-Y gene conversion, which has had an important role in the evolution of multi-copy testis gene families in the MSY.

Rhox in mammalian reproduction and development

  • Lee, Sang-Eun;Lee, Su-Yeon;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.40 no.3
    • /
    • pp.107-114
    • /
    • 2013
  • Homeobox genes play essential roles in embryonic development and reproduction. Recently, a large cluster of homeobox genes, reproductive homeobox genes on the X chromosome (Rhox) genes, was discovered as three gene clusters, ${\alpha}$, ${\beta}$, and ${\gamma}$ in mice. It was found that Rhox genes were selectively expressed in reproduction-associated tissues, such as those of the testes, epididymis, ovaries, and placenta. Hence, it was proposed that Rhox genes are important for regulating various reproductive features, especially gametogenesis in male as well as in female mammals. It was first determined that 12 Rhox genes are clustered into ${\alpha}$ (Rhox1-4), ${\beta}$ (Rhox5-9), and ${\gamma}$ (Rhox10-12) subclusters, and recently Rhox13 has also been found. At present, 33 Rhox genes have been identified in the mouse genome, 11 in the rat, and three in the human. Rhox genes are also responsible for embryonic development, with considerable amounts of Rhox expression in trophoblasts, placenta tissue, embryonic stem cells, and primordial germ cells. In this article we summarized the current understanding of Rhox family genes involved in reproduction and embryonic development and elucidated a previously unreported cell-specific expression in ovarian cells.

Testis-specific transcripts in the chicken

  • Kim, Duk-Kyung
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2005.11a
    • /
    • pp.53-59
    • /
    • 2005
  • Sequences of candidate chicken testis-specific genes were analyzed in order to develop a resource for functional genomic studies of the testis and male germ cells. Tentative consensus sequences (TCs) containing ESTs expressed in testis libraries only were selected from the TIGR Gallus gallus Gene Index, resulting in a total of 292 TCs. The transcriptional expression of these genes were evaluated in a variety of chicken tissues, including testis and ovary, Of the panel of 292 TCs, 110 were expressed in a testis-specific manner. The correlation between the number of ESTs assembled into each TC and the number of testis-specific TCs was not significant. Annotation of the TCs using the Gene Ontology database terms showed that the proportion of testis-specific TCs that were classified as having catalytic activity (within the Molecular Function branch) was larger than the proportion of total chicken TCs classified in the same way. Our results might facilitate the investigation of testis-specific genes and their functional analysis in the chicken as well as in other avian species.

  • PDF