• Title/Summary/Keyword: major odor compounds

Search Result 99, Processing Time 0.031 seconds

Odorous Emissions from Household-related Sources: A Case Study on a Sewage Treatment Plant (생활악취 배출원의 악취 배출 특성 연구: 하수처리장을 중심으로)

  • Jeon, E.C.;Sa, J.H.;Kim, S.T.;Hong, J.H.;Kim, K.H.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.3
    • /
    • pp.337-351
    • /
    • 2006
  • In this study, to describe the basic characteristics of strong odorous sources, the emissions of odorous compounds from a large-scale sewage treatment plant in K city were investigated. According to this study, the emission patterns of major odorous compounds were distinguished clearly by several factors such as treatment processing types, chemical compositions of odors released, and temporal changes (e.g., seasonal variations). For the purpose of this study, emission rates of odorous compounds were quantified using a dynamic flux chamber (DFC) method from three major treatment (T) processes including T1 (Grit sedimentation basin), T2 (Aeration tank), and T3 (Final sedimentation). When the relative strengths of each emission source were compared, the strongest one was seen from T1 with the maximum of $NH_{3}\;(34.5\;{\mu}g/m^{2}/min)$ followed by $H_{2}S\;(20.4\;{\mu}g/m^{2}/min)($. While the strongest emissions of most odorous compounds were seen commonly from T1, those seen from T2 and T3 were significantly reduced relative to the ones found in T1. Considering the general patterns of odorous emission, it is concluded that control of odors from T1 unit is most important because of its considerably high emission strengths.

Study on Sensory Properties and Volatile Flavor Compounds of Kimchi Added with Backryeoncho (Opuntia ficus-indica var. saboten) Extracts (백련초 추출물 첨가 김치의 관능적 특성 및 휘발성 성분에 대한 연구)

  • Lee, Young-Sook;Jeong, Eun-Jeong;Rho, Jeong-Ok
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.22 no.4
    • /
    • pp.506-513
    • /
    • 2012
  • This principal objective of this study was to evaluate the sensory properties and flavor compounds of Kimchi prepared with different levels (0.0%, 0.4%, 0.8%, and 1.2%) of Backryeoncho extracts (BE). At high levels of BE, Kimchi showed increased level of crispness and flavor, and also jeotgal odor decreased in the sensory evaluation. Addition of 0.8 % BE resulted in the highest scores for color, taste, and overall acceptance of Kimchi. Therefore, addition of 0.8 % BE appears to be an acceptable approach to enhance the quality of Kimchi without reducing acceptability. As a result of flavor compound analysis, a total of 24 volatile flavor compound, including 11 S-containing compounds, 6 terpenes, 1 acid, 1 ester, 1 alcohol, 2 miscellaneous compounds, 2 thiocyanates, etc., were detected by GC/MS. The major volatile compounds were s-containing compounds and terpene hydrocarbon, and especially terpene of sabinene was newly detected in Kimchi with added BE. Levels of 2-vinyl-[4H]-1,3-dithin derived from garlic flavor as a sulfide-containing compound along with diallyl trisulfide derived from green onion flavor were reduced in Kimchi with added 0.8% BE. Most sulfide-containing compounds were reduced in Kimchi with added BE, whereas most terpenes detected in control Kimchi were not detected.

Volatile Compounds of Pine Needle(Pinus rigida Miller) Extracts (소나무(Pinus rigida Miller) 잎 추출물의 휘발성 성분)

  • 홍원택;고경민;이재곤;장희진;곽재진
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.24 no.1
    • /
    • pp.53-59
    • /
    • 2002
  • This study was conducted to evaluate whether pine needle extracts can be used as tobacco flavors. Yield of essential oil, absolute and oleoresin extracted from pine needles is 0.07%, 1.20% and 6.08% respectively. The volatile compounds isolated from the three types of extracts were analyzed by gas chromatography(GC) and mass selective detector(MSD). Total 72 components were identified in the three type of extracts including 26 hydrocarbons, 16 alcohols, 13 esters, 9 acids, 4 phenols, 2 aldehydes and 2 ketones compounds. The major components were $\beta$-pinene, $\beta$-caryophyllene, $\delta$-cadinene and 4,5-dimethyl-1,3 -dioxol-2-one. There were 49 volatile components in the absolute, 44 components in the essential oil and 26 components in the oleoresin. The content of hydrocarbons and alcohols was higher in the essential oil extracted by simultaneous distillation extraction(SDE) than in others, while that of esters and acids was higher in the absolute than in others. Especially, phenols and ketones were identified only in the oleoresin. The components such as $\beta$-pinene, bornyl acetate, $\alpha$-terpineol and oxygenated terpenes have characteristic piney and fresh green odor. The contents of these components was higher in the essential oil and the absolute than in the oleoresin. Therefor, the essential oil and the absolute are expected to be more useful than the oleoresin as tobacco flavor.

Characteristics of Purified Horse Oil by Supercritical Fluid Extraction with Different Deodorants Agents

  • Anneke;Hye-Jin Kim;Dongwook Kim;Dong-Jin Shin;Kyoung-tag Do;Chang-Beom Yang;Sung-Won Jeon;Jong Hyun Jung;Aera Jang
    • Food Science of Animal Resources
    • /
    • v.44 no.2
    • /
    • pp.443-463
    • /
    • 2024
  • This study investigated the impact of activated carbon, palm activated carbon, and zeolite on horse oil (HO) extracted from horse neck fat using supercritical fluid extraction with deodorant-untreated HO (CON) as a comparison. The yield and lipid oxidation of deodorant untreated HO (CON) were not significantly affected by the three deodorants. However, deodorant-treated HOs exhibited significantly elevated levels of α-linolenic acid (C18:3n3) and eicosenoic acid (C20:1n9) compared to CON (p<0.05), while other fatty acids remained consistent. Zeolite-purified HO demonstrated significantly lower levels of volatile organic compounds (VOCs) than other treatments (p<0.05). Remarkably, zeolite decreased the concentration of pentane, 2,3-dimethyl (gasoline odor), by over 90%, from 177.17 A.U. ×106 in CON to 15.91 A.U. ×106. Zeolite also effectively eliminates sec-butylamine (ammonia and fishy odor) as compared to other deodorant-treated HOs (p<0.05). Additionally, zeolite reduced VOCs associated with the fruity citrus flavor, such as nonanal, octanal, and D-limonene in HO (p<0.05). This study suggests that integrating zeolite in supercritical fluid extraction enhances HO purification by effectively eliminating undesirable VOCs, presenting a valuable approach for producing high-quality HO production in the cosmetic and functional food industries.

Adsorption-DAF Hybrid Process for the Simultaneous Removal of Algae and Organic Compounds (조류와 유기화합물의 동시제거를 위한 흡착 - DAF 복합공정)

  • Lee, Jae-Wook;Kwak, Dong-Heui;Choi, Seung-Phil;Jung, Heung-Joe
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.208-214
    • /
    • 2004
  • Dissolved air flotation (DAF) is an effective solid/liquid separation process for low density floc particles such as algal, color-alum and clay-alum flocs produced from low turbidity water. The removal of taste and odor-causing organics (2-mthylisoboneol and geosmin) originating from algae in drinking water is a local and worldwide concern. Although DAF has been effectively applied for the removal of suspended solid, its application for the treatment of dissolved organic carbon is very limited. In this study, a new hybrid system consisting of adsorption and DAF processes was introduced for the simultaneous removal of algae and taste and odor-causing organics. Powdered activated carbon (PAC) was used as an adsorbent. In this proposed system, the major concern of eliminating the spent PAC from the system was also addressed. It was found that zeta potential of algae and PAC was increased with coagulant dosage, and the removal efficiency in DAF was also enhanced up to 90~95% under the given experimental conditions. Based on this study, the hybrid process was found to be a promising technology for the simultaneous removal of algae and dissolved organic pollutants.

Characteristics of Taste Compounds of Red Snow Crab Cooker Effluent and Hepatopancreas for Developing a Crab-like Flavorant (게향 소재 개발을 위한 붉은 대게 자숙액 및 내장의 정미 성분 특성)

  • Cha, Yong-Jun;Cho, Woo-Jin;Jeong, Eun-Jeong
    • The Korean Journal of Food And Nutrition
    • /
    • v.19 no.4
    • /
    • pp.466-472
    • /
    • 2006
  • In order to develop materials of crab-like flavorant, taste compounds including physicochemical characteristics were analyzed in red snow crab cooker effluent(RSCCE) and hepatopancreas. The $30\;^{\circ}Brix$ was a suitable condition in from 1.5 to $40\;^{\circ}Brix$ RSCCE by sensory evaluation. Lactic acid and succinic acid were major compounds in non-volatile organic acids detected in both $30\;^{\circ}Brix$ RSCCE and hepatopanceras. The 5 compounds such as AMP, HxR, IMP, ATP and GMP were major in ATP related compounds of $30\;^{\circ}Brix$ RSCCE, whereas 3 compounds including IMP, GMP and Hx in hepatopanceras. The content of total free amino acids in hepatopancreas was 5.6 times higher than in $30\;^{\circ}Brix$ RSCCE. The major compounds in $30\;^{\circ}Brix$ RSCCE were followed by methionine, lysine, arginine, valine, histidine, alanine, hydroxy proline, and glycine in that order, whereas methyl histidine, leucine, alanine, glutamic acid, glycine, valine, threonine, taurine, isoleucine, and serine were followed in hepatopancreas. By adding 0.5%(w/w) hepatopancreas in $30\;^{\circ}Brix$ RSCCE, crab meat-like odor was kept high level by sensory evaluation.

Effects of amino acid composition in pig diet on odorous compounds and microbial characteristics of swine excreta

  • Recharla, Neeraja;Kim, Kihyun;Park, Juncheol;Jeong, Jinyoung;Jeong, Yongdae;Lee, Hyunjeong;Hwang, Okhwa;Ryu, Jaehyoung;Baek, Youlchang;Oh, Youngkyun;Park, Sungkwon
    • Journal of Animal Science and Technology
    • /
    • v.59 no.12
    • /
    • pp.28.1-28.8
    • /
    • 2017
  • Background: Major amino acids in pig diets are Lys, Met, Thr, and Trp, but little is known about the requirements for the other essential amino acids, especially on odorous compounds and microbial characteristics in feces of growing-finishing pigs. To this end, different levels of amino acid composition added to diets to investigate the effects of amino acid composition on microbial characteristics and odorous compounds concentration. Methods: A total eight (n = 8) barrows (Landrace ${\times}$ Yorkshire ${\times}$ Duroc) with an average bodyweight of $89.38{\pm}3.3kg$ were individually fed diets formulated by Korean Feeding Standards 2007 (old version) or 2012 (updated with ideal protein concept) in metabolism crates with two replication. After 15-day adaptation period, fresh faecal samples were collected directly from pigs every week for 4 weeks and analysed for total volatile fatty acids (VFA), phenols and indoles by using gas chromatography. The nitrogen was determined by Kjeldahl method. Bacterial communities were detected by using a 454 FLX titanium pyrosequencing system. Results: Level of VFA tended to be greater in 2012 than 2007 group. Among VFAs, 2012 group had greater (p < 0.05) level of short chain fatty acids (SCFA) than control.Concentration of odorous compounds in feces was also affected by amino acid composition in pig diet. Levels of ammonium and indoles tended to be higher in 2012 group when compared with 2007 group.Concentration of phenols, p-cresol, biochemical oxygen demand, and total Kjeldahl nitrogen, however, were lower (P < 0.05) in 2012 treatment group compare to 2007. The proportion of Firmicute phylum were decreased, while the Bacteriodetes phylum proportion increased and bacterial genera includingCoprococcus, Bacillus, and Bacteroides increased (p < 0.05) in 2012 compare to 2007 group. Conclusion: Results from our current study indicates that well balanced amino acid composition reduces odor by modulating the gut microbial community. Administration of pig diet formulated with the ideal protein concept may help improve gut fermentation as well as reduce the odor causing compounds in pig manure.

A Study of Control Efficiency for Odorous Pollutants in Various Emission Control Units in the Ban-Wall Industrial Complex (공단지역의 대기배출시설을 대상으로 한 악취성분의 처리효율에 관한 연구 - 반월공단 지역을 중심으로)

  • Choi, Y.J.;Jeon, E.C.;Kim, K.H.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.1
    • /
    • pp.110-124
    • /
    • 2007
  • In this study, the control efficiency of odorous compounds was measured from diverse control process units of 14 individual companies located within the Ban-Wall industrial complex of Ansan city, Korea (January to July 2005), To quantify the control efficiency levels of major odorous compounds, we collected odor samples from both the front and rear side of 17 control process units ($N=17{\times}2=34$). If the control efficiency is compared for each of 32 compounds between different process units, wet scrubber (WS) was found to be the most effective unit in terms of the sum of pollutants showing the positive control signals. Although the WS system shows generally a good control pattern for VOC, it is not the case for most index odorous pollutants; only 3 out of 12 index compounds were found to show positive control efficiencies. The results of the study also indicated that the control efficiency differ greatly between different industrial sectors and/or control process types. In the case of leather industry, carbonyl compounds were found to exhibit the highest control efficiency with its values varying from 19 to 90%. On the other hand, in the case of metal production sector, VOC recorded the maximum control efficiency with values varying from 18 to 79%. According to this study, most air pollution control facilities operated in most companies show fairly poor control efficiencies for most malodor compounds. Hence, to obtain best control efficiency of odorous pollutant emission, acquisition of better information on source characteristics and establishment of effective control technologies are highly demanding.

Emission Characteristics of Carbonyl Compounds from Major Industrial Sectors in the Ban-Wall Industrial Complex, Korea (카보닐 계열의 배출 특성과 그에 따른 악취 발생 기여도 비교 연구: 반월공단내 주요 산업시설물들을 중심으로)

  • Hong, Y.J.;Jeon, E.C.;Kim, K.H.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.679-692
    • /
    • 2006
  • The carbonyl compounds in the atmosphere belong to one of the regulatory pollutants for the malodor control designated by the Korean Ministry of Environment(KMOE). In the present study, the emission concentration levels of carbonyl compounds were measured along with a number of criteria odor pollutants from a total of 47 individual companies(June 2004 to January 2005). The results of our study showed that a number of carbonyl compounds(such as formaldehyde, acetaldehyde, acetone, and butyraldehyde) maintained significantly high mean concentrations of 298 to 372 ppb. In contrast, other carbonyl compounds were low enough with the mean valves of 0.54 to 19.1 ppb. It was found that except for such industries as metal production or leather processing, their emissions were generally quite significant. If the measured values were evaluated in terms of malodor intensity, butyraldehyde appeared to be the most significant contributor to the malodor release. According to the measurements made in strong source areas, it can be concluded that several carbonyl compounds(acetaldehyde, propionaldehyde, butyraldehyde, isovaleraldehyde, and valeraldehyde) are useful enough to diagnose malodor release from those source areas. It should also be addressed that a number of carbonyl compounds added newly as the result of malodor control legislation were not sensitive enough to diagnose malodor release from such sources.

Effects of Starter Candidates and NaCl on the Production of Volatile Compounds during Soybean Fermentation

  • Jeong, Do-Won;Lee, Hyundong;Jeong, Keuncheol;Kim, Cheong-Tae;Shim, Sun-Taek;Lee, Jong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.191-199
    • /
    • 2019
  • We inoculated different combinations of three starter candidates, Bacillus licheniformis, Staphylococcus succinus, and Tetragenococcus halophilus, into sterilized soybeans to predict their contributions to volatile compound production through soybean fermentation. Simultaneously, we added NaCl to soybean cultures to evaluate its effect on the volatile compounds profile. Cells in soybean cultures (1.5% NaCl) nearly reached their maximum growth in a day of incubation, while cell growth was delayed by increasing NaCl concentrations in soybean cultures. The dominance of B. licheniformis and S. succinus in the mixed cultures of three starter candidates switched to T. halophilus as the NaCl concentration increased from 1.5% to 14% (w/w). Seventeen volatile compounds were detected from the control and starter candidate-inoculated soybean cultures with and without the addition of NaCl. Principal component analysis of these volatile compounds concluded that B. licheniformis and S. succinus made major contributions to producing a specific volatile compound profile from soybean cultures where both species exhibited good growth. 3-Hydroxybutan-2-one, butane-2,3-diol, and 2,3,5,6-tetramethylpyrazine are specific odor notes for B. licheniformis, and 3-methylbutyl acetate and 2-phenylethanol are specific for S. succinus. Octan-3-one and 3-methylbutan-1-ol were shown to be decisive volatile compounds for determining the involvement of S. succinus in the soybean culture containing 7% NaCl. 3-Methylbutyl acetate and 3-methylbutan-1-ol were also produced by T. halophilus during soybean fermentation at an appropriate level of NaCl. Although S. succinus and T. halophilus exhibited growth on the soybean cultures containing 14% NaCl, species-specific volatile compounds determining the directionality of the volatile compounds profile were not produced.