• Title/Summary/Keyword: maintenance standard materials

Search Result 115, Processing Time 0.025 seconds

The Problems and Improvement Methods of Apartment Management Company Selection System (공동주택 관리업체 선정방식의 문제점과 개선방안)

  • Chun, Hyeon-Sook
    • Journal of the Korean housing association
    • /
    • v.23 no.2
    • /
    • pp.89-98
    • /
    • 2012
  • As the construction of multi-family housings, especially apartments, has been increased since 1970s, the multi-family housing becomes one of the main housing types in Korea. With the increase of multi-family housings, managing them becomes an important issue. Since 2010, the government has made a lowest price award system by a competitive bid compulsory to promote the development of housing management systems. Although competitive bids were implemented, the maintenance company was finally selected by the price without any other consideration. Consequently, the quality of management service was not enhanced. The purpose of this study is to suggest the improvement scheme of multi-family housing management system. In this study, the bidding data of "K-apt", the bidding method and the successful tendered price are analyzed. The results of analyzing bidding materials, the proportion of applying a lowest price system was 67.7%. Also many diverse ways to select the best management company were used, but most of these ways were violate the law and guidelines of Ministry of Land, Transport and Maritime Affairs. It meant that the lowest price award system was not implemented by strict standards and didn't correspond with the needs of residents of apartment. This condition made the housing maintenance quality low and deteriorated the management industry development. To enhance this condition, a new standard to select the management company, which are included contents of quality of managing quality, management expenses and companies' soundness, is necessary.

Mechanical Properties and Durability of Concrete in Relation to the Amount of Limestone Use (석회석 혼입량에 따른 콘크리트의 역학적 및 내구특성)

  • Oh, Sungwoo;Shin, Dongcheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.138-144
    • /
    • 2017
  • In order to reduce carbon dioxide emission in construction industry, less amount of cement use can be one of the alternatives to manufacture concrete. One of the non-sintered construction materials are limestone, which is the raw material to manufacture ordinary Portland cement(OPC). A large amount of limestone have already been used as binders such as blended cement in Europe and US. Even European countries were already established the standard of blended cement, where the limestone can be used up to 35 percent. In this study, experimental researches were conducted to investigate the effects of limestone replacement on the mechanical properties and durability of concrete with 15%, 25% and 35% of limestone substitution to use limestone in blended cement. 15 percent use of limestone in blended cement developed equivalent or even higher compressive strengths compared to Plain mixture. Porosity of limestone cement with 15 percent substitution was much lower than Plain mixture. Most durability tests such as concrete carbonation, freeze-thaw cycle and drying shrinkage strains were conducted to evaluate long-term performance, and the test results indicated that 15 percent of limestone use did not significantly influence on the concrete durability compared with plain concrete.

An Experimental Study on the Physical Property of Lime Mortar in the Building' Masonry (조적조 건축물의 석회 모르타르 특성에 관한 실험적 연구)

  • Kwon, Ki-Hyuk;Yu, Hye-Ran
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.5 s.57
    • /
    • pp.133-141
    • /
    • 2009
  • 50 year-old masonry buildings which had been constructed using lime mortar have caused lots of problems because of using different material, cement mortar, when they repair them. Also, there is little information on structural capacities and details of masonry buildings built using lime mortar. In addition, it is difficult to evaluate the structural capacities of the buildings which were often constructed by untrained labors. To preserve the original masonry construction, the study on their construction materials and methodologies has to be carried out. This paper provides basic information for establishing standard details of masonry works using lime mortar in order to overcome these problems when cultural properties are repaired or retrofitted. To do this, compression tests of lime mortar were preformed with the parameters of mixing ratios, mixing material, curing time and curing conditions etc. Based on the test results, the differences between lime mortar and cement mortar were specified and the structural characteristics of lime mortar were also presented in this paper.

Impact of aggressive exposure conditions on sustainable durability, strength development and chloride diffusivity of high performance concrete

  • Al-Bahar, Suad;Husain, A.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.1
    • /
    • pp.35-48
    • /
    • 2015
  • The main objective of this study is to evaluate the long-term performance of various concrete composites in natural marine environment prevailing in the Gulf region. Durability assessment studies of such nature are usually carried out under aggressive environments that constitute seawater, chloride and sulfate laden soils and wind, and groundwater conditions. These studies are very vital for sustainable development of marine and off shore reinforced concrete structures of industrial design such as petroleum installations. First round of testing and evaluation, which is presented in this paper, were performed by standard tests under laboratory conditions. Laboratory results presented in this paper will be corroborated with test outcome of ongoing three years field exposure conditions. The field study will include different parameters of investigation for high performance concrete including corrosion inhibitors, type of reinforcement, natural and industrial pozzolanic additives, water to cement ratio, water type, cover thickness, curing conditions, and concrete coatings. Like the laboratory specimens, samples in the field will be monitored for corrosion induced deterioration signs and for any signs of failureover initial period ofthree years. In this paper, laboratory results pertaining to microsilica (SF), ground granulated blast furnace slag (GGBS), epoxy coated rebars and calcium nitrite corrosion inhibitor are very conclusive. Results affirmed that the supplementary cementing materials such as GGBS and SF significantly impacted and enhanced concrete resistivity to chloride ions penetration and hence decrease the corrosion activities on steel bars protected by such concretes. As for epoxy coated rebars applications under high chloride laden conditions, results showed great concern to integrity of the epoxy coating layer on the bar and its stability. On the other hand corrosion inhibiting admixtures such as calcium nitrite proved to be more effective when used in combination with the pozzolanic additives such as GGBS and microsilica.

Development and Performance Improvement of old Aluminum Extruder Remanufacturing Technology (노후된 알루미늄 압출기의 재제조 기술 개발 및 성능 개선)

  • Sang-Min Yoon;Hang-Chul Jung;Man-Seek Kong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.95-103
    • /
    • 2023
  • The domestic remanufacturing industry is concentrated in auto parts, so it is necessary to expand into various industries. In the domestic aluminum industry, the extrusion process accounts for more than 40% of the total, but the old and management of the extrusion equipment is not done properly. In particular, the extruder has a structure in which equipment is not replaced until major parts are damaged or worn, so there are problems such as lower process precision, productivity and production efficiency compared to new equipment, and high maintenance costs. In this study, the old extruder was remanufactured for major high-risk parts through Failure Mode and Effect Analysis(FMEA), and the process level and performance of the extruder were evaluated before and after remanufacturing. Compared to the existing extruder, the standard deviation of the remanufacture extruder was reduced by 93.5%, 57.9%, and 70.0%, respectively, in major process control items such as container temperature, billet temperature, and ram speed, keeping performance constant. In addition, it was possible to produce products with complex shapes that could not be produced before due to problems such as dimensional deviation within tolerances. In this study, remanufacturing guidelines were presented by analyzing the effect of failure modes of the old extruder, and the performance improvement of the extruder was confirmed.

A Hardening and Strength Properties of Magnesium Phosphate Mortars for Rapid Repair Materials (급속 보수용 마그네슘 인산염 모르타르의 경화 및 강도특성)

  • Oh, Hongseob;Lee, Inhee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.103-110
    • /
    • 2019
  • Damage to the pavement system due to various causes will be required rapid repair work for reopening the vehicle traffic. The magnesium oxide phosphate composite(MPC) has a short curing time and is capable of early compressive strength development, is suitable for rapid repair materials. The aim of this study was to evaluate the hardening and compressive strength characteristics of MPC according to the water-binder (W / B) ratio and magnesium-phosphate(M / P) ratio in order to develop repair materials consisted with light burned magnesia and potassium dihydrogen phosphate. In order to ensure the workability in the field application, the difference of mechanical properties according to standard sand and ordinary sand and performance of retards were evaluated. The mix proportion with W/B ratio was about 35% and the M/P ratio was about 1.0 ~ 1.2 has a superior perfomance with strength and hardening condition. Especially, the strength of composite at only 1 day curing with W/B ratio of 0.35 and the M/P ratio of 1.2 was shown the higher than 25.0 MPa. Boric acid as a retarder was found to be suitable for ensuring the working time, and the purity of magnesium oxide was about 90 ~ 95%, which is effective for ensuring curing time and strength.

A Study on Structural Maintenance of 'Old Wall' Designated as National Registered Cultural Heritage (국가등록문화재로 지정된 옛 담장의 정비 양상)

  • So, Hyun-Su;Jeong, Myeong-Seok
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.41 no.1
    • /
    • pp.21-34
    • /
    • 2023
  • This study identified the materials and construction methods of 'Old Wall' in 13 villages which were designated as National Registered Cultural Heritage at the time of designation and examined the their structural changes based on field survey. The results are as follows: First, the 'Old Wall' consisted of 10 Soil-Stone Wall and 5 Stone Wall. At the time of designation, Stone Wall, which was built irregularly by dry-construction of natural stones, is similar in shape, but Soil-Stone Wall showed difference by the construction method of making used stones, joints, and faces. Second, the study extracted the changes of 'Old Wall' by repair and examined the changes of construction methods as well as the substitution and addition of materials of structure. The wall-roof was built with cement roof-tile and asbestos slate which have the advantage improve durability and cost-effectiveness. In addition, tile-mouth soil was added to korean traditional roof-tile to prevent rainwater from flowing in. Besides, to improve constructional convenience, the natural stone of the wall-body was replaced with blast stone, float stone and cut stone. Cement block, cement brick and cement mortar were frequently used to repair as well. As Soil-Stone Wall was transformed from irregular pattern-construction to comb pattern-construction and wet-construction was changed to dry-construction, it caused landscape and structural problems. Also, the layer of cement mortar applied to wall-foundation blocked the flow of rainwater that was induced by dry-construction of natural stones. Third, the study regarded that the problem with the repair of 'Old Wall' may occur as it is located in living space, because the owner of the wall could repair for the minor damages without technical knowledge. In addition, it is difficult for repair companies in charge of maintenance of Cultural Heritage to supply local materials, and it is differential construction specifications are not applied.

Study on Bearing Life Calculation for Wind Turbine Gearbox (풍력터빈 기어박스의 베어링 수명 계산에 관한 연구)

  • Liang, Long-jun;Choi, Chang;Zhang, Qi;Xu, Zhe-Zhu;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.21-27
    • /
    • 2014
  • Currently, wind power has become a major research field in the area of sustainable development. As one important component of a wind turbine transmission system, most instances of downtime due to a gearbox failure are caused by bearing failures. Gearboxes for wind turbines must have the highest levels of reliability over a period of approximately 20 years, withstanding high dynamic loads. At the same time, a lightweight design and cost minimization efforts are required. These demands can only be met with a well-thought-out design, high-quality materials, a high production quality and proper maintenance. In order to design a reliable and lightweight gearbox, it is necessary to analyze methods pertaining to the bearing rating lifetimes of the standard and of different companies, also including calculation methods for modification factors. This can determine the influence of the bearing lifetime.

Performance Appraisal of the Ceramic Metal Resin Paints for Waterproof and Anti-Corrosion to Improve the Property of Concrete Structure (콘크리트 구조물의 표층부 내구성 증진을 위한 세라믹 메탈계 방수$\cdot$방식재 도료의 성능 평가 연구)

  • Jun Byung-Hun;Kim Jin-Sung;Kang Hyo-Jin;Oh Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.113-117
    • /
    • 2005
  • The ceramic metal resin paints for waterproof and anti corrosion is not long history in development of materials even many actual result. So far, no standard have been given to construction and maintenance method, Quality and property, it is real state that cannot afford to proper quality control in job site or production. This study has been test for the ceramic metal resin paints for water and anti corrosion, as the result, it have proper performance of job site and mechanical performance of compare to other existing. In particular, tensile strength indicates more high about $14.1N/mm^2$ than epoxy resin paints, and in elongation per unit length is more high It is shows having better adhesive strength than epoxy resin paint for crack on the concrete structure. Moreover, The ceramic metal paint for water and corrosion proofing have to have main performance is watertightness and resistance for external impact, chloride ion permeation, drinkable water elution.

  • PDF

Development of Up- and Down-flow Constructed Wetland for Advanced Wastewater Treatment in Rural Communities (소규모 오수발생지역의 고도처리시설을 위한 상.하 흐름형 인공습지 개발)

  • Kim, Hyung-Joong;Yoon, Chun-G.;Kwun, Tae-Young;Jung, Kwang-Wook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.6
    • /
    • pp.113-124
    • /
    • 2006
  • The feasibility of the up- and down-flow constructed wetland was examined fur rural wastewater treatment in Korea. Many constructed wetland process was suffered from substrate clogging and high plant stresses because of long term operation. The up- and down-flow constructed wetland process used porous granule materials (charcoal pumice : SSR=10:20:70) for promoting intake rate of nutrient to plant, and especially flow type was designed continuously repeating from up-flow to down-flow. $BOD_5$ and SS was removed effectively by the process with the average removal rate being about 75% respectively. The wetland process was effective in treating nutrient as well as organic pollutant. Removal of TN and TP were more effective than other wetland system and mean effluent concentrations were approximately 7.5 and $0.4mg\;L^{-1}$ which satisfied the water quality standard for WWTPs. The treatment system did not experience any clogging or accumulations of pollutants and reduction of treatment efficiency during winter period because constructed polycarbonate glass structure prevented temperature drop. Considering stable performance and effective removal of pollutant in wastewater, low maintenance, and cost-effectiveness, the up- and down-flow constructed wetland was thought to be an effective and feasible alternative in rural area.