• Title/Summary/Keyword: maintenance policy

Search Result 721, Processing Time 0.024 seconds

A Study on Optimal Preventive Maintenance Policy When Failure Rate is Exponentially Increasing After Repair (수리 후 고장률이 지수적으로 증가하는 경우에 최적 예방보전 정책)

  • Kim, Tae-Hui;Na, Myung-Hwan
    • Journal of Applied Reliability
    • /
    • v.11 no.2
    • /
    • pp.167-176
    • /
    • 2011
  • This paper introduces models for preventive maintenance policies and considers periodic preventive maintenance policy with minimal repair when the failure of system occurs. It is assumed that minimal repairs do not change the failure rate of the system. The failure rate under prevention maintenance received an effect by a previously prevention maintenance and the slope of failure rate increases the model where it considered. Also the start point of failure rate under prevention maintenance considers the degradation of system and that it increases quotient, it assumed. Per unit time it bought an expectation cost from under this prevention maintenance policy. We obtain the optimal periodic time and the number for the periodic preventive maintenance by using Nakagawa's Algorithm, which minimizes the expected cost per unit time.

Developing a Decision-Making Model to Determine the Preventive Maintenance Schedule for the Leased Equipment (대여 장비의 예방정비 일정 결정을 위한 의사 결정 모델 개발)

  • Lee, Ju-hyun;Bae, Ki-ho;Ahn, Sun-eung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.2
    • /
    • pp.24-31
    • /
    • 2018
  • As a system complexity increases and technology innovation progresses rapidly, leasing the equipment is considered as an important issue in many engineering areas. In practice, many engineering fields lease the equipment because it is an economical way to lease the equipment rather than to own the equipment. In addition, as the maintenance actions for the equipment are costly and need a specialist, the lessor is responsible for the maintenance actions in most leased contract. Hence, the lessor should establish the optimal maintenance strategy to minimize the maintenance cost. This paper proposes two periodic preventive maintenance policies for the leased equipment. The preventive maintenance action of policy 1 is performed with a periodic interval, in which their intervals are the same until the end of lease period. The other policy is to determine the periodic preventive maintenance interval minimizing total maintenance cost during the lease period. In addition, this paper presents two decision-making models to determine the preventive maintenance strategy for leased equipment based on the lessor's preference between the maintenance cost and the reliability at the end of lease period. The structural properties of the proposed decision-making model are investigated and algorithms to search the optimal maintenance policy that are satisfied by the lessor are provided. A numerical example is provided to illustrate the proposed model. The results show that a maintenance policy minimizing the maintenance cost is selected as a reasonable decision as the lease term becomes shorter. Moreover, the frequent preventive maintenance actions are performed when the minimal repair cost is higher than the preventive maintenance cost, resulting in higher maintenance cost.

Burn-in When Repair Costs Vary With Time

  • Na, Myung-Hwan;Lee, Sangyeol
    • Journal of Korean Society for Quality Management
    • /
    • v.31 no.1
    • /
    • pp.142-147
    • /
    • 2003
  • Burn-in is a widely used method to eliminate the initial failures. Preventive maintenance policy such as block replacement with minimal repair at failure is often used in field operation. In this, paper burn-in and maintenance policy are taken into consideration at the same time. The cost of a minimal repair is assumed to be a non-decreasing function of its age. The problems of determining optimal burn-in times and optimal maintenance policy are considered.

Availability Analysis of a System with Preventive Maintenance (예방 관리 기능을 갖는 시스템의 가용도 분석)

  • Lee, Yutae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.7
    • /
    • pp.869-874
    • /
    • 2019
  • Performing preventive maintenance on a system reduces unexpected downtime caused by system aging and increases its availability. In general, preventive maintenance can be largely divided into two broad categories: time-based maintenance policy and condition-based maintenance policy. In the time-based maintenance policy the preventive maintenance is triggered at scheduled time epochs with fixed time intervals, while in the condition-based maintenance policy the preventive maintenance is performed when system state is checked to satisfy a specific condition. Condition-based maintenance has some benefits in improving maintenance efficiency, compared to time-based one. This paper presents a stochastic model for analyzing a system with condition-based preventive maintenance, where the preventive maintenance is performed after a random time since the system aging occurs, and provides an analytical solution for the steady-state availability and the corresponding profit.

Cost Analysis Model with Minimal Repair of New Unit Repair Policy under Periodic Maintenance Policy (정기보전 제도에서 응급수리를 고려한 신제품 수리정책에서의 비용분석 모델)

  • Kim, Jae-Joong
    • Journal of Applied Reliability
    • /
    • v.6 no.3
    • /
    • pp.195-203
    • /
    • 2006
  • This paper deals with cost analysis model in periodic maintenance policy. The repair policy with minimal repair is considered as follow : as the occurrence of failure between minimal repair and periodic interval time, unit is replaced by a new unit before the periodic maintenance time comes. Then total expected cost per unit time is calculated according to time delta t in a view of customer's. The total expected costs are included repair and usage cost : operating, fixed, minimal repair, periodic maintenance and new unit expected cost. Numerical example is shown in which failure time of item has Normal distribution.

  • PDF

Developing the Optimal Decision-Making Process through Preventive Maintenance Policy Based on the Reliability Threshold for Leased Equipment (대여장비의 신뢰도 기반 예방보전 정책을 통한 최적 의사결정 과정 개발)

  • Bae, Kiho;Lee, Juhyun;Park, Seonghwan;Ahn, Suneung
    • Journal of Applied Reliability
    • /
    • v.17 no.3
    • /
    • pp.246-255
    • /
    • 2017
  • Purpose: This study proposes the optimal PM (preventive maintenance) policy of leased equipment for lessee's decision-making using two types of reliability condition. Methods: We consider reliability threshold based PM model. Equipment reliability is estimated and used as condition variable. The effect of repair for maintenance is imperfect and represented by age reduction factor. Results: We provide two PM policies. Policy 1 is focused on minimized total cost. This policy guarantees reliability threshold until last maintenance action. Policy 2 focus on maintaining reliability threshold during leased period. The proposed approach provides optimal reliability threshold under number of PM. Through result, we finally construct decision-making process for lessee using reliability threshold and end of reliability. Conclusion: This study provides two PM policy for lessee's decision-making. Through numerical example, we get a result of optimal reliability threshold, number of PM, optimum alternative under lessee's reliability condition.

A Study on Condition-based Maintenance Policy using Minimum-Repair Block Replacement (최소수리 블록교체 모형을 활용한 상태기반 보전 정책 연구)

  • Lim, Jun Hyoung;Won, Dong-Yeon;Sim, Hyun Su;Park, Cheol Hong;Koh, Kwan-Ju;Kang, Jun-Gyu;Kim, Yong Soo
    • Journal of Applied Reliability
    • /
    • v.18 no.2
    • /
    • pp.114-121
    • /
    • 2018
  • Purpose: This study proposes a process for evaluating the preventive maintenance policy for a system with degradation characteristics and for calculating the appropriate preventive maintenance cycle using time- and condition-based maintenance. Methods: First, the collected data is divided into the maintenance history lifetime and degradation lifetime, and analysis datasets are extracted through preprocessing. Particle filter algorithm is used to estimate the degradation lifetime from analysis datasets and prior information is obtained using LSE. The suitability and cost of the existing preventive maintenance policy are each evaluated based on the degradation lifetime and by using a minimum repair block replacement model of time-based maintenance. Results: The process is applied to the degradation of the reverse osmosis (RO) membrane in a seawater reverse osmosis (SWRO) plant to evaluate the existing preventive maintenance policy. Conclusion: This method can be used for facilities or systems that undergo degradation, which can be evaluated in terms of cost and time. The method is expected to be used in decision-making for devising the optimal preventive maintenance policy.

A Production and Preventive Maintenance Policy with Two Types of Failures (두 가지 고장형태를 고려한 생산 및 예방보전 정책)

  • 김호균;조형수
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.3
    • /
    • pp.53-65
    • /
    • 2002
  • This paper studies an economic manufacturing quantity (EMQ) model with two types of failures and planned preventive maintenance of the production facility. One is a type I (major) failure which should be corrected by a failure maintenance and the other is a type H (minor) failure which can be minimally repaired without interrupting the production run. The objective is to determine the lot size and preventive replacement policy minimizing the long-run expected cost per unit time. We consider a control policy with a constant production lot size and preventive maintenance after completing n production runs. It is assumed that both preventive and failure maintenance times are random and the demand arriving during a stock-out period is lost. An expression for the expected cost per unit time is obtained in the general case. A special case is discussed and numerical results are provided.

Preventive Maintenance Policy Following the Expiration of Extended Warranty Under Replacement-Repair Warranty (교체-수리보증 하에서 연장된 보증이 종료된 이후의 예방보전정책)

  • Jung, Ki Mun
    • Journal of Applied Reliability
    • /
    • v.14 no.2
    • /
    • pp.122-128
    • /
    • 2014
  • In this paper, we consider the periodic preventive maintenance model for a repairable system following the expiration of extended warranty under replacement-repair warranty. Under the replacement-repair warranty, the failed system is replaced or minimally repaired by the manufacturer at no cost to the user. Also, under extended warranty, the failed system is minimally repaired by the manufacturer at no cost to the user during the original extended warranty period. As a criterion of the optimality, we utilize the expected cost rate per unit time during the life cycle from the user's perspective. And then we determine the optimal preventive maintenance period and the optimal preventive maintenance number by minimizing the expected cost rate per unit time. Finally, the optimal periodic preventive maintenance policy is given for Weibull distribution case.

Machine Maintenance Policy Using Partially Observable Markov Decision Process

  • Pak, Pyoung Ki;Kim, Dong Won;Jeong, Byung Ho
    • Journal of Korean Society for Quality Management
    • /
    • v.16 no.2
    • /
    • pp.1-9
    • /
    • 1988
  • This paper considers a machine maintenance problem. The machine's condition is partially known by observing the machine's output products. This problem is formulated as an infinite horizon partially observable Markov decison process to find an optimal maintenance policy. However, even though the optimal policy of the model exists, finding the optimal policy is very time consuming. Thus, the intends of this study is to find ${\varepsilon}-optimal$ stationary policy minimizing the expected discounted total cost of the system, ${\varepsilon}-optimal$ policy is found by using a modified version of the well-known policy iteration algorithm. A numerical example is also shown.

  • PDF