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ABSTRACT

Burn-in

is a widely used method to eliminate the initial

failures. Preventive

maintenance policy such as block replacement with minimal repair at failure is often

used in field operation. In this paper burn-in and maintenance policy are taken into

consideration at the same time. The cost of a minimal repair is assumed to be a

non-decreasing function of its age. The problems of determining optimal burn-in times

and optimal maintenance policy are considered.

1. Introduction

Let F(# be a distribution function of a
lifetime X. If X has density A on
[0, o), then its failure rate function #A(¢)
w(8)= KD/ F(8)
F(f)=1—F(?) is the survival function of
X.

Based on the behavior of failure rate,

is defined by where

classes of life
in the
literature. The following is one definition

various nonparametric

distributions have been defined
of a bathtub-shaped failure rate function
which we shall use.

Definition.

function A(#) is said to be bathtub-shaped

A real-valued failure rate

failure rate (BTR) with change points #;

if there exist change points

h(f) is strictly

and  fy,
0<#<t< such that
decreasing in [0, #), constant in [# #)
and then strictly increasing in [ £, ).
[0, #] is called the
period;  the

The time interval

infant  mortality interval
[#,t], where A(?) is flat and attains its
called the

the useful

normal
life; the

minimum value, is

operating life or

interval [#;,00) is called the wear-out
period.
The most common popular maintenance

policy might be the block replacement
policy with minimal repair at failure.
Under this policy the component is

replaced at planned time kT(k=1,2,-),

where T is a fixed number, and 1is
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minimally repaired at faillure between

planned replacements. Once a cost
structure is established to model the total
cost related to the maintenance policy
determined

adopted, an optimal 7T is

(denoted by T and called the optimal
maintenance policy) such that the cost will
be minimized. Under the assumption that
distribition F
increasing failure rate function, Barlow and

(1965)
block replacement policy exists,

the  underlying has

Proschan have shown that an
optimal
but may be infinite.

The

however,

policy,
depends on the
of the
used In operation. It is thus natural to
take  both
maintenance

optimal maintenance
clearly
distribution function component
preventive
The

stopped when a

bum-in  and

into  consideration.
burm-in procedure is
preassigned reliability goal is achieved, e.g.
when the mean residual life is long
enough. Since burn-in is usually costly,
one of the major problem is to decide how
long the procedure should continue. The
best time to stop the burn-in process for
a given criterion to be optimized is called
the optimal burn-in time. An introduction
to this important area of reliability can be
found in Jensen and Petersen (1982). In
the literature, certain cost structures have
and the

problem of finding the optimal burn-in

been proposed corresponding
considered. See, for

and Spizzichino (1991)

been
Clarotti

time has

example,

and Mi (1994). A
research in burn-in can be found in Block
and Savits (1997).

Mi (1994) considers the
procedure. Consider a fixed burn-in time

survey of recent

following

b and begin to burn-in a new component.
If the component fails before bum-in time
b, then repair it completely with shop
then burn-in the repaired
If the

component survives the burn-in time b,

repair cost,

component again and so on.
then it is put into field operation. For a
burmed-in component he considers the
block replacement policy with minimal
that the

minimal repair at failure is constant.

repair. He assumes cost of

In this paper, it is assumed that the
cost of a minimal repair to the component
C,.(H, where

which fails at age ¢ is

C.(H is a

function of ¢ Hence, as the component

continuous nondecreasing

ages it becomes more expensive to

perform minimal repair. It is shown that
the optimal burn-in time 4" must occur
before the change point # of h(t) under

the assumption of a bathtub-shaped failure

rate function.

2. Expected Minimal Repair
Costs

b and

begin to burn-in a new component. If the

Consider a fixed burn-in time
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component fails before burn-in time
then repair it with shop repair cost, c,,
then burn-in the repaired component again
and so on. Here it is assumed that the
repaired
If the

component survives the burn-in time 5,

repair is complete, ie. the

component is as good as new.

then it is put into field operation. The cost
for burn-in is assumed to be proportional
to the total time  with

proportionality constant c¢.

burn-in

Now denote the distribution function of
a new device by F and let {X,,i>1} be

an 1id. sequence of random variables
distributed according to F. Let 7—1 be
the random variable which is the number
of shop repairs until the first device
surviving burn-in is obtained. Thus the
cost incurred by this burn-in procedure is

given by

2(b) = co( gx,-+ b)+ ci(n—1).

It is evident that
P(77=k) =P(X1£b,"‘,Xk_:le,Xk>b)

=F*1(b) F(b);

n has a geometric distribution
with mean E(7) =1/F(b). Further, the
lifetime of that device which has survived
X,—b and is

that is,

to burm-in time & is
distributed according to
F(b+s
X —b _ F(bts) ,
HXy=09=""505
As in Mi (1994), the mean burn-in cost,

for all s=>0.

Ci(b) is given by

C(b) = BlalB) "
["Fhar
_ b F(b)
= Cy T?(b) +Cs T‘(b) .
Let N,(T) be the random variable

denoting the number of minimal rapairs
performed on the component in [&, b+ T].
We know that N,(7) has a Poisson
with Hy(n=

distribution parameter

H(b+ T) — H(b) where H()= fo ‘(s)ds.

Now if N(T)=k and ¢, ¢t are the

times of the minimal repairs, then the total

minimal repair cost in the interval
[6, 6+ T] is 2_‘.1 C,.(t). Given
Ny(T) =k, we know that
= H(t), , 1= H(t,) are distributed

as the order statistics of a random sample
of size k from the uniform distribution on
[H(b), H(b+ T)].

minimal repair cost given N,(7T)=#Fk is

=E(C,(H ' (2))) 4+ C,.( H ™ (z)]
N{(T)=Fk)
= kE(C,.(H ' (z))INy(T) = k)
k
T H(b+ T)— Hb)
Hi T

o
fH( C,(H™' (D) adt.

b)

Hence, the expected

Therefore, the expected minimal repair
cost in the interval [b, 6+ T7 is

E(E(C,, (1) + -+ + Colt nyn))INKLT)))
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. N(T) b—
= PRt - H) ~ L (e J ol g
H(b+T) » T\™ F(b * F(b)
f H(B) Cu(H () dt) since N (H=[#T] is not random.

1
(T D=
H(b+T)
Sy CnlH ™ (D)at) ECNKT)

H(b)
H(b+

— D -1
= Juy CH T (D)at

b+ T
= [ Cuon(at

Thus, the

maintenance 1s

b+ T
C( T =c,+ f  Cu(Dh(Bdt. (@

total cost incurred by

where c¢, the cost of a replacement.

3. Optimal Burn-in

Let NP be the random variable

denoting the
during field time
[b,b+ 1. Then N()=[#T] where [x]

is the largest integer which is not greater

number of replacements

operating interval

than x. Since the cost of each burned-in
component is g(b), the associated cost is
(N,(H+1)g(b). Hence the corresponding

long-run average cost is

E(NAH+1)g(b)

t »o0 t

(N, (H+ 1) Eg(b)

t-00 t

Combining (1), (2) and (3) the long-run

average cost per unit time C(b, T) is
given by
b
F(Hdt
1 fo_ F(b)
(b, ) T(c" e Ry @

b+ T
+c,+fb Cm(t)h(t)a’t)
The

burn-in time &° and the optimal age 7"

results regarding the optimal
which satisfy

min
b=0,7>0

are given in the following theorem.

b, T = C(b, T)

THEOREM 1 Suppose the failure rate
h(f) is differentiable and BTR
and tz. If

function

with change points #

C,(Dh(?) is not eventually constant, then

the optimal burn-in time 4° and the
corresponding  optimal  age T =T
satisfy

0<b’<t; and T'= T>0.

Proof. For any fixed 5=(
_d_
a7 (6. D
- % {2 )~ c,+ C1 (DT},

where C(b) is as in (1) and 7,(7T)=
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b+ T
TC,(b+ Dh(b+ T) — fb Co(DR(Ddt
Hence, dC(b, T)/0T=0 if and only if

1(T)=c,+ C,(). (5)
Note  that 75(0)=0, 7, (1) =
TNC,.(b+ Db+ 1)’ and 7,(0) =00

since  C,(h(H is not eventually
constant.
For b=t,, #5,(T) is nondecreasing for

all T=0 and the equation (5) has a

unique solution which we denote by T5.
For 0<6<t,, 7,7) is nondecreasing

for all T=# —b. Hence the equation (5)

has at least one solutions and C(b, T)
has at least one local minimum points. We
take the largest point having minimum

C(b, T) the local

minimum points as 7. This shows that

value of among

the solution 7 must satisfy 750 for
any given b=0.

The fact that T, satisfies equation (5)
gives

TC(b+ T R(b+ T3)

b+ TS
-

C(Or(Ddt=c,+ C(d).

(6)

Combining (4) and (6), we obtain
C(b, Ty) = C,(b+ Ty)h(b+ T}).  Thus
minimizing (b, T;) is equivalent to
minimizing  C,(b+ Tp)h(b+ T;)  for

6=0. If &>#, then b+ T3>t and the

problem of minimizing C(b, T;) is
actually equivalent to minimizing
(b+ T3). Taking the derivative with

respect to b on both sides of (6), we
obtain

T(1+ T Cb+ TR+ T

= C,(b+ Th(b+ T}) — C,{b)(b) (7)
+Ci (D),

where C;" (b) =

e F (0 + 0.+ ¢, | F(Hd)
F (b

If  b>¢, Cul(b+ Ty)h(b+ T})
—Cn(b)R(b)>0. Since C; (5)>0 for all
b=0, consequently, from (7)
Ty(1+ T3) [Cu(b+ TR+ TH] D0
This yield 1+ T3>0 b+ Tt
[Con(b+ T3) h(b+ TH1'>0.

then

since
and thus

Hence
% (b+ T3>0, for all b>¢,.

Therefore the minimum value of b+ T
can be only be achieved on the interval
[0,#], ie. 0<b"<#. This completes the

proof.
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