• 제목/요약/키워드: main rotor

검색결과 343건 처리시간 0.028초

수리온 주로터 블레이드 프라이머 공정변경을 통한 PU Strip 품질 향상에 관한 연구 (A Study on PU Strip Quality Improvement through a Change of Primer-process for SURION Main Rotor Blade)

  • 이윤우;김영진;서영진;김민호
    • 품질경영학회지
    • /
    • 제47권3호
    • /
    • pp.401-415
    • /
    • 2019
  • Purpose: When the SURION Aircraft operated in the fields, cracks are found in PU(polyurethane) Strip on main rotor blade. This study has been conducted to explain PU(polyurethane) Strip crack phenomenon of SURION main rotor blade and to propose useful solution of it by experimental method. Methods: This study considered a lot of factor because the SURION is operated at severe environment. This study investigated the influence of temperature, thermal shock, paint and primer process, PU Strip material, primer material. Results: The results of this study are as follows; The primer process was most excellent influence. The Application of primer having a brittleness caused by a crack of PU Strip. Other factors have influenced on the PU Strip, but they can not be controlled because they are related to the SURION's operating environment. Conclusion: The Quality of PU Strip on SURION main rotor blade was improved through removing the primer process. Finally, the reliability of main rotor blade was guaranteed through improving the quality of PU Strip.

전진비행하는 UH-60A 헬리콥터 전기체 형상에 대한 유동 해석 (Numerical Flow Simulation of a UH-60A Full Rotorcraft Configuration in Forward Flight)

  • 이희동;권오준;강희정
    • 한국항공우주학회지
    • /
    • 제38권6호
    • /
    • pp.519-529
    • /
    • 2010
  • 본 연구에서는 주로터, 동체, 그리고 꼬리로터를 포함한 UH-60A 전기체 형상에 대한 비정상 유동 해석을 수행하였다. 개발된 로터해석용 유동 해석코드를 이용하여 고속 전진 비행 및 저속 전진비행 조건에 대한 해석을 수행하였으며, 해석코드의 검증을 위해 주로터에서의 비정상 공력 하중을 비행시험 및 타 연구자들의 해석 결과와 비교하였다. 주로터만 존재하는 형상, 주로터와 동체만 존재하는 형상, 그리고 꼬리로터만 존재하는 형상에 대한 해석 결과를 전기체 형상에 대한 해석 결과와 비교함으로써 헬리콥터 각 컴포넌트 간의 공기력 간섭현상을 분석하였다. 동체는 주로터에서 발생하는 내리흐름 분포를 변화시킴으로써 주로터의 수직력 분포를 변화시키는 요인이 됨을 확인하였으며, 주로터 끝단으로부터 발생한 와류와 꼬리로터 블레이드가 충돌함에 따라 강한 간섭현상이 발생함을 확인하였다

헬리콥터 무베이링 메인 로터 허브 시스템의 구조 건전성에 관한 연구 (Study on Structural Integrity of Bearingless Main Rotor Hub System of Helicopter)

  • 이무형;박일경;김성준;황인희;김태주
    • 한국항공운항학회지
    • /
    • 제20권4호
    • /
    • pp.50-56
    • /
    • 2012
  • Rotor system is a very important part which produce lift, thrust and control force in helicopter. Component of rotor system must have structural integrity for applied load. The estimation of structural integrity is regarded greatly as important in aerospace field. In this study, the process of structural analysis performed for bearingless main rotor system of helicopter. The composite flexbeam and torque tube of bearingless main rotor are very thick, so 3D layered soild elements of MSC.PATRAN were used to get the finite element analysis results. To estimate structural integrity, non-linear static analysis considering geometric non-linearity is performed. In addition, detailed finete element analysis and non-linear static analysis are performed to consider the stress concentration for fitting effect and contact surface. The estimation process of structural integrity for bearingless main rotor system of helicopter may help the design.

전진 비행하는 헬리콥터 주로터 시스템의 점성 유동 해석 (VISCOUS FLOW CALCULATIONS OF HELICOPTER MAIN ROTOR SYSTEM IN FORWARD FLIGHT)

  • 정문승;권오준;강희정
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.31-38
    • /
    • 2009
  • In the present study, viscous flow calculations of helicopter main rotor system in forward flight were made by using an unstructured hybrid mesh solver. Each rotating blade relative to the cartesian frame was simulated independently by adopting unstructured overset mesh technique. For the validation of the present method, calculations for the Caradonna-Tung non-lifting forward flight and the AH-1G main rotor system in forward flight were made. Additional computation was made for the UH-60A rotor in forward flight. Reasonable agreements were obtained between the present results and the experiment.

  • PDF

Main Rotor Blade Tip 형상 변화에 따른 유동분석 (A study of Main Rotor Blade Tip shape and analysis of flow around Main Rotor Blade Tip)

  • 김세일
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제2회(2013년)
    • /
    • pp.382-386
    • /
    • 2013
  • 본 연구에서는 Main Rotor Blade Tip 형상 변화에 따른 후류해석을 통해 와류 생성 및 주변 유동을 분석하여 블레이드 팁 형상의 변화가 와류 간섭을 감소시키는지의 여부를 확인하였다. EDISON CFD를 이용하여 블레이드 Blade Tip 형상에 따라 유동이 어떻게 나타나며, Blade 후류의 압력과 점성의 변화를 분석하여 와류의 양상을 해석하였다. 비교 Blade 형상은 2세대 긴 직사각형 모형, KUH 수리온의 Blade, 유로콥터사의 'Blue Edge'로 비교적 최근에 개발된 대표적인 Blade Tip 형상 3개로 정하였다. 결과를 토대로 블레이드 뒷전의 와류흐름 양상을 확인하여 블레이드 와류 간섭현상의 감소를 확인하였다.

  • PDF

Numerical Investigation of Aerodynamic Interference in Complete Helicopter Configurations

  • Lee, Hee-Dong;Yu, Dong-Ok;Kwon, Oh-Joon;Kang, Hee-Jung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권2호
    • /
    • pp.190-199
    • /
    • 2011
  • Unsteady flow simulations of complete helicopter configurations were conducted, and the flow fields and the aerodynamic interferences between the main rotor, fuselage, and tail rotor were investigated. For these simulations, a three-dimensional flow solver based on unstructured meshes was used, coupled with an overset mesh technique to handle relative motion among those components. To validate the flow solver, calculations were made for a UH-60A complete helicopter configuration at high-speed and low-speed forward flight conditions, and the unsteady airloads on the main rotor blade were compared to available flight test data and other calculated results. The results showed that the fuselage changed the rotor inflow distribution in the main rotor blade airloads. Such unsteady vibratory airloads were produced on the fuselage, which were nearly in-phase with the blade passage over the fuselage. The flow solver was then applied to the simulation of a generic complete helicopter configuration at various flight conditions, and the results were compared with those of the CAMRAD-II comprehensive analysis code. It was found that the main rotor blades strongly interact with a pair of disk-vortices at the outer edge of the rotor disk plane, which leads to high pulse airloads on the blade, and these airloads behave differently depending on the specific flight condition.

무베어링 헬리콥터 로터의 지상공진 불안정성 특성 해석 (Ground Resonance Instabilities Analysis of a Bearingless Helicopter Main Rotor)

  • 윤철용;기영중;김태주;김덕관;김승호
    • 한국소음진동공학회논문집
    • /
    • 제22권4호
    • /
    • pp.352-357
    • /
    • 2012
  • The ground resonance instability of a helicopter with bearingless main rotor hub were investigated. The ground resonance instability is caused by an interaction between the blade lag motion and hub inplane motion. This instability occurs when the helicopter is on the ground and is important for soft-inplane rotors where the rotating lag mode frequency is less than the rotor rotational speed. For the analysis, the bearingless rotor was composed of blades, flexbeam, torque tube, damper, shear restrainer, and pitch links. The fuselage was modeled as a mass-damper-spring system having natural frequencies in roll and pitch motions. The rotor-fuselage coupling equations are derived in non-rotating frame to consider the rotor and fuselage equations in the same frame. The ground resonance instabilities for three cases where are without lead-lag damper and fuselage damping, with lead-lag damper and without fuselage damping, and finally with lead-lag damper and fuselage damping. There is no ground resonance instability in the only rotor-fuselage configuration with lead-lag damper and fuselage damping.

Numerical Simulation of Rotor-Fuselage Aerodynamic Interaction Using an Unstructured Overset Mesh Technique

  • Lee, Bum-Seok;Jung, Mun-Seung;Kwon, Oh-Joon;Kang, Hee-Jung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권1호
    • /
    • pp.1-9
    • /
    • 2010
  • Numerical simulation of unsteady flows around helicopters was conducted to investigate the aerodynamic interaction of main rotor and other components such as fuselage and tail rotor. For this purpose, a three-dimensional inviscid flow solver has been developed based on unstructured meshes. An overset mesh technique was used to describe the relative motion between the main rotor, and other components. As the application of the present method, calculations were made for the rotor-fuselage aerodynamic interaction of the ROBIN (ROtor Body INteraction) configuration and for a complete UH-60 helicopter configuration consisted of main rotor, fuselage, and tail rotor. Comparison of the computational results was made with measured time-averaged and instantaneous fuselage surface pressure distributions for the ROBIN configuration and thrust distribution and available experimental data for the UH-60 configuration. It is demonstrated that the present method is efficient and robust for the simulation of complete rotorcraft configurations.

KARI의 헬리콥터 로터 소음관련 기술개발 현황 (Status of Helicopter Rotor Noise Technology Development in KARI)

  • 황창전;정기훈;송근웅;주진;이욱
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.187-192
    • /
    • 2006
  • Helicopter noise has been considered as one of major design factors like a performance and safety since the public acceptance, comfortability and stealth aspects were important for customers. According to the airworthiness regulation, the noise levels in throe different flight conditions shall comply with the specific limits. Main and tail rotors noise is most dominant in far field due to the low and mid range frequency characteristics. It is an air-born noise so That the accurate aerodynamic data is necessary for the accurate noise prediction. In KARI, low noise main and tail rotors as well as analysis codes have been developed since 2000. The approach for low noise main rotor is a kind of tip modifications, so called twin vortices tip to reduce the BVI noise. Analysis results show the 9.3dB reduction in terms of pseudo EPNL. The uneven spacing concept is applied for low noise tail rotor. Three or four decibel noise reduction is achieved by new optimized uneven spacing. Rotor noise and aerodynamic prediction codes have been improved also.

  • PDF

엔진 오일펌프계 소음.진동 최적화 (NVH Optimization of the Eng. Oil Pump System)

  • 신달흔;배성윤;유동규;강구태;권오영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.923-928
    • /
    • 2007
  • The rattle noise originated from the oil-pump system was issued in developing an engine. In this paper, the major concerning factors for rattle noise are analyzed and the NVH developing process is summarized. The main factors are the tip clearance of inner/outer rotor, the clearance between oil pump housing and rotor guide and the rotor mass. Also, the optimization for oil-pump rotor whine noise is performed. The main factors of the rotor whine are the profile of the rotor, the oil pressure and the shape of oil route. This paper will present the design guidelines of the engine oil-pump system.

  • PDF