• Title/Summary/Keyword: main reinforcement

Search Result 617, Processing Time 0.029 seconds

A Study on the Form Analysis Tools Based on the User's Emotional Response (사용자의 감성반응에 기초한 형태 분석 도구에 대한 연구)

  • Choi, Min-Young
    • Science of Emotion and Sensibility
    • /
    • v.12 no.2
    • /
    • pp.233-242
    • /
    • 2009
  • Recently the studies on user-centered design and form-development have become issues of general interest as the key methods for successful design. For form analysis on user it is important needs that an integrated approach of existing methods and development of expert tool for designer. Moreover analysis methods and tools have to meet with the designers needs of visual result, clear direction, concrete formative factor, user's emotional response and designer-friendly interface. This study proposed the main concepts of form analysis tool based on the user's emotional response ; integrated management, variables set-up, visual result of analysis, in-depth analysis with data mining and correlation, and reinforcement of user-centered analysis. Specific analysis tool consists of 5 functions: Project Management, Analysis Frame Set-up, Data Input-output, Basic Analysis, and In-depth Analysis. The feasibility of proposed tool was verified by a case study of mobile phone design in under-graduate class.

  • PDF

A Case Study on the Stability Analysis of a Cutting Slope Composed of Weathered Granite and Soil (화강풍화암 및 풍화토층 지역 깍기 비탈면의 안정성 검토 사례 연구)

  • Han, Kong-Chang;Ryu, Dong-Woo;Cheon, Dae-Sung;Hong, Eun-Soo
    • Tunnel and Underground Space
    • /
    • v.18 no.4
    • /
    • pp.289-299
    • /
    • 2008
  • Based on the case study on the causes for the failure of cutting slope composed of weathered rock and soil, the factors influencing the design of a cutting slope have been examined, This type of rock and soil is widely distributed on the region whose parent rock is granite. To analyze the stability of the cutting slope, the following series of progress has been conducted: (1) ground characterization by geological survey and ground investigation, (2) the safety factor examination by limit equilibrium analysis and numerical analysis and (3) the comparison and analysis of rainfall and failure history. As a result, the main factors to cause the failure is determined to be the decrease of shear strength in the upper parts whose ground condition is weakened during localized heavy rain. Moreover, the analysis indicates the failure is also closely related to the groundwater inflow path. On the base of this investigation, a reinforcement method is proposed to ensure the stability of the cutting slope.

An Application of Smart Composite for Health Monitoring (Health Monitoring을 위한 스마트 복합재료의 적용)

  • Lee, Jin-Kyung;Ha, Young-Joon;Park, Young-Chul;Lee, Joon-Hyun;Lee, Sang-Pill
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.4
    • /
    • pp.328-338
    • /
    • 2007
  • One of main advantages of composite using smart material as reinforcement can be controlled cracks behavior inside the composite. If the smart composite is applied as part of the structure, the use of the shape memory effect of the smart material is the best way to protect the propagation of cracks generated in the structure while use. In this study, the optical manufacturing conditions for the smart composite were derived. In order to evaluate the shape memory effect by shape memory alloy, the tensile load was applied to the smart composite and stress distribution was inspected. And then, the smart composite was heated to a certain temperature and the shape memory alloy would shrink to the original shape. Finally, at this point the recovering status of stress using photoelastic instrument was discussed.

Strength and Crack Resistance Properties of Fiber Reinforced Concrete Mixed with Recycled PET Fiber (재생 PET 섬유가 혼입된 섬유 보강 콘크리트의 강도 및 균열저항 특성)

  • Kim, Sung-Bae;Kim, Hyun-Young;Yi, Na-Hyun;Kim, Jang-Ho Jay
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.102-108
    • /
    • 2010
  • The main objective of this study was to evaluate the effect of recycled PET (RPET) fiber made from waste PET bottles to examine application on concrete member. To evaluate the reinforcement effect of RPET fiber in concrete member, experimental tests were performed, such as mechanical property tests (compressive strength, modulus of elasticity and splitting tensile strength) and drying shrinkage test. In mechanical property tests, compressive strength and modulus of elasticity in concrete mixed with RPET fiber gradually decreased, but splitting tensile strength gradually increased as volume fraction of fiber increased. In drying shrinkage test, free drying shrinkage increased. In restrained case, in contrast, crack occurrence was delayed because of tensile resistance increase by RPET fiber. The comparison of RPET and PP fiber added concrete specimen's properties showed that two materials had similar properties. In conclusion, RPET fiber is an alternative material of PP fiber, even finer for its excellence in eco-friendliness due to the recycling of waste PET bottles and its possible contribution to the pollution declination.

Equal Energy Consumption Routing Protocol Algorithm Based on Q-Learning for Extending the Lifespan of Ad-Hoc Sensor Network (애드혹 센서 네트워크 수명 연장을 위한 Q-러닝 기반 에너지 균등 소비 라우팅 프로토콜 기법)

  • Kim, Ki Sang;Kim, Sung Wook
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.10
    • /
    • pp.269-276
    • /
    • 2021
  • Recently, smart sensors are used in various environments, and the implementation of ad-hoc sensor networks (ASNs) is a hot research topic. Unfortunately, traditional sensor network routing algorithms focus on specific control issues, and they can't be directly applied to the ASN operation. In this paper, we propose a new routing protocol by using the Q-learning technology, Main challenge of proposed approach is to extend the life of ASNs through efficient energy allocation while obtaining the balanced system performance. The proposed method enhances the Q-learning effect by considering various environmental factors. When a transmission fails, node penalty is accumulated to increase the successful communication probability. Especially, each node stores the Q value of the adjacent node in its own Q table. Every time a data transfer is executed, the Q values are updated and accumulated to learn to select the optimal routing route. Simulation results confirm that the proposed method can choose an energy-efficient routing path, and gets an excellent network performance compared with the existing ASN routing protocols.

An Empirical Study on the management Strategies of Korean Firms corresponding with the Political Environment in local Brazil : Focusing on the Analysis of Structural Equation Modeling (한국 기업의 브라질 현지 정치적 환경에 대응하는 경영전략에 관한 연구)

  • Kim, Chul
    • International Area Studies Review
    • /
    • v.14 no.3
    • /
    • pp.131-154
    • /
    • 2010
  • This study tries to analyze what the most significant factors are in Brazil, where the Korean investing firms have to overcome and adapt to various difficulties, especially in terms of political environment. This main purpose of this research is to test empirically some relations of between the managing strategy of Korean firms and the environment factors of politics in Brazil while this is conducted in two stages. First, the research model is designed by reviewing relevant theories, previous studies, and the current investment conditions in local Brazil. Second, the survey of Korean firms engaged in investment activities in there is done by collecting questionnaires from them. with this survey, the strategic method of multiple regression is used to testing some hypotheses. At the result of Analysis, It is proved there haven been negative affecting political factors of law/regulation system and administrative operation service, and Korean firms have implementing the responding management strategies with reasonable adaptation to risks and human network reinforcement.

Sensory evaluation of a body lotion formulated with hot spring water from Deokgu, Korea (덕구온천수로 제조된 바디로션의 관능평가)

  • Kim, So Jung;Kang, Mingyeong;Lee, Taek-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.420-427
    • /
    • 2019
  • The purpose of this study was to evaluate hot spring water (HSW) from Deokgu as a cosmetic ingredient in the preparation of a body lotion. The HSW was tested for its suitability as an aqueous-phase main component. Microbiological and chemical stability tests of the HSW were carried out. Microorganisms including E. coli were not detected or detected below the detection limits, and no harmful heavy metals were found. The cytotoxicity of the HSW was also considered, and its pH determined over a period of three months. Further, sensory characteristics were assessed for consumer acceptance by performing sensory tests on body lotions formulated using either Deokgu HSW or distilled water. Skin moisturization, irritation and tension reinforcement were found to be enhanced when using the HSW lotion rather than that formulated with distilled water. Taken together, the results of this study show that the use of HSW in cosmetic formulations contributes to the efficacy of these products.

Earthquake-resistant rehabilitation of existing RC structures using high-strength steel fiber-reinforced concrete jackets

  • Kalogeropoulos, George I.;Tsonos, Alexander-Dimitrios G.;Konstantinidis, Dimitrios;Iakovidis, Pantelis E.
    • Earthquakes and Structures
    • /
    • v.17 no.1
    • /
    • pp.115-129
    • /
    • 2019
  • The effectiveness of an innovative method for the earthquake-resistant rehabilitation of existing poorly detailed reinforced concrete (RC) structures is experimentally investigated herein. Eight column subassemblages were subjected to earthquake-type loading and their hysteretic behaviour was evaluated. Four of the specimens were identical and representative of columns found in RC structures designed in the 1950s-70s period for gravity load only. These original specimens were subjected to cyclic lateral deformations and developed brittle failure mechanisms. Three of the damaged specimens were subsequently retrofitted with innovative high-strength steel fiber-reinforced concrete (HSSFC) jackets. The main variables examined were the jacket width and the contribution of mesh steel reinforcement in the seismic performance of the enhanced columns. The influence of steel fiber volume fraction was also examined using test results of a previous work of Tsonos et al. (2017). The fourth earthquake damaged subassemblage was strengthened with a conventional RC jacket and was subjected to the same lateral displacement history as the other three retrofitted columns. The seismic behaviour of the subassemblages strengthened according to the proposed retrofit scheme was evaluated with respect to that of the original specimens and that of the column strengthened with the conventional RC jacket. Test results clearly demonstrated that the HSSFC jackets effectively prevented the development of shear failure mechanisms, while ensuring a ductile seismic response similar to that of the subassemblage retrofitted with the conventional RC jacket. Ultimately, an indisputable superiority in the overall seismic performance of the strengthened columns was achieved with respect to the original specimens.

A Study on the Safety Monitoring of Bridge Facilities based on Smart Sensors (스마트 센서 기반의 교량 시설물 안전 모니터링 기법 연구)

  • YEON, Sang-Ho;KIM, Joon-Soo;YEON, Chun-Hum
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.2
    • /
    • pp.97-106
    • /
    • 2019
  • Today, many smart sensor's measurement instruments are used to check the safety situation of various medium and large bridge structures that should be maintained in the construction facilities, but most of them use the method of measuring and confirming the displacement behavior of the bridge at regular intervals. In order to continuously check the safety situation, various measuring instruments are used, but most of them are not able to measure and measure the displacement and behavior of main construction structures at regular intervals. In this study, GNSS and environment smart sensors and drone's image data are transmitted to wireless network so that risk of many bridge's structures can be detected beforehand. As a result, by diagnosing the fine displacement of the bridge in real time and its condition, reinforcement, repair and disaster prevention measures for the structural parts of the bridges, which are expected to be dangerous, and various disasters and accidents can be prevented, and disaster can be prevented could suggest a new alternative.

Investigation of the LPG Gas Explosion of a Welding And Cutting Torch at a Construction Site

  • Lee, Su-kyung;Lee, Jung-hoon;Song, Dong-woo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.811-818
    • /
    • 2018
  • A fire and explosion accident caused by a liquefied petroleum gas (LPG) welding and cutting torch gas leak occurred 10 m underground at the site of reinforcement work for bridge columns, killing four people and seriously injuring ten. We conducted a comprehensive investigation into the accident to identify the fundamental causes of the explosion by analyzing the structure of the construction site and the properties of propane, which was the main component of LPG welding and cutting work used at the site. The range between the lower and upper explosion limits of leaking LPG for welding and cutting work was examined using Le Chatelier's formula; the behavior of LPG concentration change, which included dispersion and concentration change, was analyzed using the fire dynamic simulator (FDS). We concluded that the primary cause of the accident was combustible LPG that leaked from a welding and cutting torch and formed a explosion range between the lower and upper limits. When the LPG contacted the flame of the welding and cutting torch, LPG explosion occurred. The LPG explosion power calculation was verified by the blast effect computation program developed by the Department of Defense Explosive Safety Board (DDESB). According to the fire simulation results, we concluded that the welding and cutting torch LPG leak caused the gas explosion. This study is useful for safety management to prevent accidents caused by LPG welding and cutting work at construction sites.