• 제목/요약/키워드: main blade

검색결과 264건 처리시간 0.023초

사이클로콥터의 복합재료 Wing blade 설계 및 제작 (Design and Manufactures of Cyclocopter Composite Wing Blades)

  • 김승조;윤철용;백병주
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.187-190
    • /
    • 2000
  • Cyclocopter is air vehicle to vertically take-off and land like a helicopter. This is an efficient and quiet means of being able to direct thrust compared to a helicopter. The rotor consists of several blades rotating about a horizontal axis perpendicular to the direction of normal flight. The direction of blade span is parallel to rotating axis and both end roots are connected to the hub to resist centrifugal force and to transmit the power. The pitch of the individual blades to the tangent of the circle of the blade's path is varied cyclically to gain thrust. In the paper, the design and manufactures of cyclocopter rotor blades are presented. Stress at the roots of cyclocopter blades is great due to centrifugal and aerodynamic forces and aeroelastic instabilities appear. The blades consist of main spar, front spar, polyurethan foam, weight, and skin and spars and skin are made of glass/epoxy composite.

  • PDF

설계유량을 고려한 천음속 축류압축기 동익의 삼차원 형상최적설계 (Aerodynamic Design Optimization of A Transonic Axial Compressor Rotor with Readjustment of A Design Point)

  • 고우식;김광용;고성호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.639-645
    • /
    • 2003
  • Design optimization of a transonic compressor rotor (NASA rotor 37) using response surface method and three-dimensional Navier-Stokes analysis has been carried out in this work. Baldwin-Lomax turbulence model was used in the flow analysis. Two design variables were selected to optimize the stacking line of the blade, and mass flow was used as a design variable, as well, to obtain new design point at peak efficiency. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, adiabatic efficiency was successfully improved, and new design mass flow that is appropriate to an improved blade was obtained. Also, it is found that the design process provides reliable design of a turbomachinery blade with reasonable computing time.

  • PDF

축류송풍기 부착형 공냉식 열교환기의 진동저감 (Vibration Reduction of an Air Cooled Heat Exchanger with Axial Flow Fan)

  • 정구충;최연선
    • 한국소음진동공학회논문집
    • /
    • 제11권6호
    • /
    • pp.163-168
    • /
    • 2001
  • Vibration problems occurred in an air cooled heat exchanger with axial flow fan for a petrochemical plant were investigated. Experimental field test and theoretical verification were performed. To find the main cause of the high vibration of the fan at the air inlet of the axial fan, the frequency spectrum was measured. The natural frequency of the driving support of the heat exchanger was numerically calculated. Both of the measured and the natural frequency were approximately equal to the blade passing frequency. Because it was difficult to modify the structure of the driving support during the normal operation of the plant, the blade number of the fan was increased, which greatly reduced the vibration level of the heat exchanger.

  • PDF

고속 회전 풍력 시스템의 로터 설계 인자에 따른 공력 소음 해석 연구 (Aerodynamic Noise Analysis of High Speed Wind Turbine System for Design Parameters of the Rotor Blade)

  • 이승민;김호건;손은국;이수갑
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.521-524
    • /
    • 2009
  • This study describes aerodynamic noise of high speed wind turbine system, which is invented as a new concept in order to reduce the torque of main shaft, for design parameters of the rotor blade. For parametric study of high speed rotor aerodynamic noise, Unsteady Vortex Lattice Method with Nonlinear Vortex Correction Method is used for analysis of wind turbine blade aerodynamic and Farassat1A and Semi-Empirical are used for low frequency noise and airfoil self noise. Parameters are chord length, twist and rotational speed for this parametric research. In the low frequency range, the change of noise is predicted the same level as each parameters varies. However, in case of broadband noise of blade, the change of rotational speed makes more variation of noise than other parameters. When the geometric angles of attack are fixed, as the rotational speed is increased by 5RPM, the noise level is increased by 4dB.

  • PDF

신규장비 적용을 통한 한국형 기동헬기 블레이드 생산공정개선 (Improvement of Manufacturing Process for KUH by Applying new equipment)

  • 김영진;박차환;김홍주;심한석
    • 한국항공우주학회지
    • /
    • 제41권5호
    • /
    • pp.415-421
    • /
    • 2013
  • 본 논문에서는 한국형 기동헬기 사업을 통해 국산화 된 블레이드 생산 공정 중의 일부 문제점에 대해 검토하고, 개선에 대한 연구를 수행하였다. 개발과 달리 양산은 많은 항공기를 장기간에 걸쳐 군에 납품하기 때문에 신뢰성 있는 공정이 구축되어야 한다. 생산 공정 개선을 위해 로봇과 히트몰드를 개발하여 적층, 경화 공정에 적용하였고, 신규 장비의 성능을 평가하였다. 추가적으로 신규 공정을 통하여 생산된 블레이드를 개발에서 실시한 시험을 수행하여 품질 및 성능을 평가하여 개선된 공정이 양산에 적합함을 입증하였다.

틸트각 변화에 따른 틸트로터 항공기 주위의 유동해석 (Flow Analysis around Tilt-rotor Aircraft at Various Tilt Angles)

  • 김수연;최종욱
    • 한국가시화정보학회지
    • /
    • 제9권2호
    • /
    • pp.40-47
    • /
    • 2011
  • Tilt-rotor aircraft can be used in various fields because they have the capabilities of the vertical take-off and landing and the high-speed cruise flight. In the present study, the flow analysis of a tilt-rotor aircraft is conducted at various tilt angles. The lift and drag forces of the tilt-rotor aircraft are obtained and the wakes by the rotor-blade are visualized. The result shows that the rotor-blade affects the lift force in a hovering mode and the main wing has an influence on the lift force in a cruise mode. Additional thrust is required at the tilt angle of around 40 degree due to the least lift force. The drag force is dependent on the rotor-blade at overall tilt angles. The minus drag force appears between the tilt angles of 90 degree and 55 degree. Also, the drag force is dramatically increased at the other tilt angles. The wake by rotor-blade affects the flow around the fuselage of the tilt-rotor aircraft at the tilt angles of 75 degree and 60 degree.

대형선박의 추진기 진동 모우드 특성 (Vibration Mode Characteristics on a Propeller in very Large Vessel)

  • 김재홍;조대승;한성용
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2005년도 특별논문집
    • /
    • pp.97-106
    • /
    • 2005
  • According to the trends of construction of large size vessel with high power the natural frequencies of the bending modes of propeller blades have been lower than the past. Therefore, it is expected that the noise and vibration problems of the marine propeller are frequently occurred. As main issue of the propeller noise and vibration problem, the cavitation noise and singing noise due to the flow induced excitation of the bending modes of propeller blade in the high frequency range has been studied by the hydrodynamic researchers in the view point of the excitation force reduction. In this paper, the vibration mode characteristics of propeller with a large diameter in very large vessel are investigated by the vibration analysis of the finite element method using MSC/Nastran and the vibration measurement by the impact test on the propeller blade. According to the results, the natural frequencies of various blade bending modes in water entrained condition could be estimated from the natural frequencies taken by the measurement and free vibration analysis in the dry condition, and it could be estimated how the high frequency noise such as singing is generated from the blade bending modes.

  • PDF

정익 후연의 냉각유체분사를 포함한 축류터빈단의 성능해석 (Performance Analysis of an Axial Flow Turbine Stage with Coolant Ejection from Stator Trailing Edge)

  • 김동섭;김재환;노승탁
    • 대한기계학회논문집B
    • /
    • 제23권7호
    • /
    • pp.831-840
    • /
    • 1999
  • In this work, an aerothermodynamic calculation model for cooled axial flow turbine blades with trailing edge ejection is suggested and a mean line performance analysis of a turbine stage with nozzle cooling is carried out. A unique model regarding the interaction between coolant and main gas is proposed, while existing correlations are adopted to predict viscous loss and blade outflow angle. The interactions considered are the heat transfer from main gas to coolant and the temperature and pressure losses by the mixing of two streams due to the trailing edge coolant ejection. For a stator blade without ejection, trailing edge loss calculated by the trailing edge analysis is compared with that calculated by loss correlation. The effect of heat transfer effectiveness of coolant passage on the mixing loss is analyzed. For a model turbine stage with nozzle cooling, parametric analyses are carried out to investigate the effect of main design variables(coolant mass flow ratio, temperature and ejection area) on the stage performance.

항공기엔진용 1단계 터빈블레이드에 대한 파손 연구 (The Study for Fracture in the First Stage Blade of Aircraft Engine)

  • 윤영웅;박형규;김정
    • 한국항공우주학회지
    • /
    • 제46권10호
    • /
    • pp.806-813
    • /
    • 2018
  • 항공기 엔진을 구성하는 부품 중 하나인 블레이드의 파손에 대해 분석하였다. 블레이드의 파손원인과 그 거동은 다양하지만 크게 일시파단과 피로파손의 두가지 형태로 나뉘어진다. 이 논문에서는 전체 거동은 일시파단으로 진행되고 일부 피로 파손된 블레이드에 대해 기술하였고, 특히 고온에서의 블레이드 손상거동을 분석하므로써 사례의 하나로 제시하고자 한다. 분석한 블레이드는 니켈기 초내열 합금으로 외관, 재질, 미세조직, 고온 크리프 특성, 파단면 형상을 각각의 분석장비를 활용하여 손상원인과 거동을 확인하였고, 원재질에서 재현하였다. 고온에서 니켈 합금은 ${\gamma}^{\prime}$ 형상이 변형되고 조직변형(Alloy Depletion)구간이 관찰되며 재질의 기계적 성질, 물성치 등이 저하되고 연화되어 장시간 운용 시 파손될 수 있다. 니켈합금은 고온특성이 좋으나 함유되는 미량원소에 따라 그 물성치가 다양하므로 니켈합금이라 하여도 그 목적에 맞는 세분화된 소재를 사용해야한다.

Numerical simulation and investigation of jet impingement cooling heat transfer for the rotor blade

  • Peiravi, Amin;Bozorg, Mohsen Agha Seyyed Mirza;Mostofizadeh, Alireza
    • Advances in aircraft and spacecraft science
    • /
    • 제7권6호
    • /
    • pp.537-551
    • /
    • 2020
  • Investigation of leading edge impingement cooling for first stage rotor blades in an aero-engine turbine, its effect on rotor temperature and trailing edge wake loss have been undertaken in this study. The rotor is modeled with the nozzle for attaining a more accurate simulation. The rotor blade is hollowed in order for the coolant to move inside. Also, plenum with the 15 jet nozzles are placed in it. The plenum is fed by compressed fresh air at the rotor hub. Engine operational and real condition is exerted as boundary condition. Rotor is inspected in two states: in existence of cooling technique and non-cooling state. Three-dimensional compressible and steady solutions of RANS equations with SST K-ω turbulent model has been performed for this numerical simulation. The results show that leading edge is one of the most critical regions because of stagnation formation in those areas. Another high temperature region is rotor blade tip for existence of tip leakage in this area and jet impingement cooling can effectively cover these regions. The rotation impact of the jet velocity from hub to tip caused a tendency in coolant streamlines to move toward the rotor blade tip. In addition, by discharging used coolant air from the trailing edge and ejecting it to the turbines main flow by means of the slot in trailing edge, which could reduce the trailing edge wake loss and a total decrease in the blade cooling loss penalty.