• Title/Summary/Keyword: main blade

Search Result 264, Processing Time 0.021 seconds

Diagnostics of nuclear reactor coolant pump in transition process on performance and vortex dynamics under station blackout accident

  • Ye, Daoxing;Lai, Xide;Luo, Yimin;Liu, Anlin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2183-2195
    • /
    • 2020
  • A mathematical model for the flowrate and rotation speed of RCP during idling was established. The numerical calculation method and dimensionless method were used to analyze the flow, head, torque and pressure and speed changes under idle conditions. Regularity, using the Q criterion vortex identification judgment method combined with surface flow spectrum morphology analysis to diagnose the vortex dynamic characteristics on RCP blade. On impeller blade, there is two oscillations in the pressure ratio on pressure surface in blade outlet region. The velocity on the suction surface is two times more oscillating than the inlet of blade, and there is an intersection with the velocity ratio curve on pressure surface. On blade of guide vane, the pressure ratio increases along the inlet to outlet direction, and the speed ratio decreases with the increase of idle time. There is a vortex that rotates counterclockwise on the suction surface, and the streamline on the suction surface of blade is subjected to the entrainment and blocking action of the vortex creates a large reverse flow in the main flow region. There are two vortices at the outlet of guide vane suction side and the vortices are in opposite directions.

Effect of Blade Leading Edge Sweep on the Performance of a High Pressure Centrifugal Compressor Impeller

  • Wang, Hongliang;Xi, Guang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.823-827
    • /
    • 2008
  • The effects of blade leading edge sweep on both the aerodynamic performance and the structure stress of a high pressure centrifugal compressor impeller are numerically investigated. Changes in the flow structure occur as a result of the effect of leading edge sweep on the loading distribution in the tip region. The flow separation is avoided by introducing a sweep of the main blade leading edge and the strength of shock is reduced at the same time. Backswept of the leading edge is found to be beneficial to the impeller performance improving. On the other hand, the structural analysis indicated that high rotating speed of the impeller will cause substantial high bending stresses and radial deflections of the blade. Studies have shown that it is possible to control the stress distribution along the tip and root of the blade by slight adjustments to the sweep angle of the leading edge. These adjustments may be used to design the impeller with lower blade root stress distribution without aerodynamics performance penalty.

  • PDF

Structural Optimum Design of Composite Rotor Blade (복합재 로터 블레이드의 구조 최적설계)

  • Park, Jung-Jin;Lee, Min-Woo;Bae, Jae-Sung;Lee, Soo-Yong;Kim, Seok-Woo
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.3
    • /
    • pp.26-31
    • /
    • 2007
  • This paper addresses a method for structural optimum design of composite rotor blade. The basic model of a composite helicopter main rotor blade is designed and its parameters determining the structural/dynamic properties are studied. Through the investigation of flap/lag/torsional stiffness, the structural properties of the model are analyzed. In this study, helicopter rotor blades are analyzed by using VABS. The computer program VABS (Variational Asymptotic Beam Section Analysis) uses the variational asymptotic method to split a three-dimensional nonlinear elasticity problem into a two dimensional cross-sectional analysis and a one-dimensional nonlinear beam problem. This is accomplished by taking advantage of certain small parameters inherent to beam-like structures. In addition, the rotational stability of the blade is estimated by the frequency diagram from FE analysis(MSC.Patran/Nastran) to understand its vibrational property. From the result, design parameters to determine and optimize the properties of the model are presented.

  • PDF

A Study of CIGS Coated Thin-Film Layer using Doctor Blade Process (Doctor blade를 이용한 용액형 CIGS 균일 코팅에 관한 연구)

  • Yu, Jong-Su;Yoon, Seong Man;Kim, Do-Jin;Jo, Jeongdai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.93.2-93.2
    • /
    • 2010
  • Recently, printing and coating technologies application fields have been expanded to the energy field such as solar cell. One of the main reasons, why many researchers have been interested in printing technology as a manufacturing method, is the reduction of manufacturing cost. In this paper, We fabricated CIGS solar cell thin film layer by doctor blade methods using synthesis of CIS precursor nanoparticles ink on molybdenum (Mo) coated soda-lime glass substrate. Synthesis CIS precursor nanoparticles ink fabrication was mixed Cu, In, Se powder and Ethylenediamine, using microwave and centrifuging. Using multi coating process as we could easily fabrication a fine flatness CIS thin-film layer ($0.7{\sim}1.35{\mu}m$), and reduce a manufacture cost and process steps. Also if we use printing and coating method and solution process in each layer of CIGS solar cell (electrode, buffer), it is possible to fabricate all printed thin-film solar cell.

  • PDF

Flutter Analysis of Annular Cascades in Counter Rotation

  • Nishino, R.;Namba, M.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.813-824
    • /
    • 2004
  • The paper studies the effect of neighboring blade rows on flutter characteristics of cascading blades. For this purpose the computation program to calculate the unsteady blade loading based on the un-steady lifting surface theory for contra-rotating annular cascades was formulated and coded. Then a computation program to solve the coupled bending-torsion flutter equation for the contra-rotating annular cascades was also developed. Some results of the flutter analysis are presented. The presence of the neighboring blade row gives rise to significant change in the critical flutter condition when the main acoustic duct mode is of cut-on state.

  • PDF

Vibration Reduction of an Air Cooled Heat Exchanger with Axial Flow Fan (축류송풍기 부착형 공냉식 열교환기의 진동 저감)

  • Jung, Goo-Choong;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.75-81
    • /
    • 2000
  • Vibration problems induced by an air cooled heat exchanger with axial flow fan were investigated during the operation of a petrochemical plant. Two different studies were done; one was experimental field test and the other was theoretical verification. To find main cause of the blade passing frequency of the fan after installing additional blockage board at the air inlet of the axial fan, the frequency spectrum was measured. The vibrations of the blade passing frequency became higher. The natural frequency of driving support of the heat exchanger was theoretically calculated. It was approximately equal to the blade passing frequency. During the normal operation of the plant, it was impossible to modify the structure of the driving support. Instead, the blade number was increased to reduce vibration level. It increased the ratio of the forcing frequency to the natural frequency of the driving support over the resonance region.

  • PDF

Heat/Mass Transfer Characteristics on Shroud with Turbine Blade Tip Clearances (터빈 블레이드 말단과 슈라우드 사이의 간극변화에 따른 슈라우드에서의 열/물질전달 특성)

  • Lee, Dong-Ho;Choe, Jong-Hyeon;Jo, Hyeong-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.414-421
    • /
    • 2001
  • The present study is conducted to investigate the local heat/mass transfer characteristics on the shroud with blade tip clearances. The relative motion between blade and shroud has little influence on the overall heat transfer characteristics, except some local effects. Therefore, the relative motion between the blade and shroud is neglected in this study. A naphthalene sublimation method is employed to determine the detailed local heat/mass transfer coefficients on the surface of the shroud. The tip clearance is changed from 0.66% to 2.85% of the blade chord length. The flow enters the gap between the blade tip and shroud at the pressure side due to the pressure difference. Therefore, the heat/mass transfer characteristics on the shroud are changed significantly from those with endwall. At first, high heat/mass transfer occurs along the profile of blade at the pressure side due to the entrance effect and acceleration of the gap flow. Then, the heat/mass transfer coefficients on the shroud increase along the suction side of the blade because tip leakage vortices are generated and interact with the main flow. The results show that the heat/mass transfer characteristics are changed largely with the gap distance between the tip of turbine blade and the shroud.

A Study on the Helicopter Composite Blade Impact Loads (헬리콥터 복합재 블레이드 충돌하중 연구)

  • Lee, Hyun-Cheol;Jeon, Boo-Il;Moon, Jang-Soo;Yee, Seok-June
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.181-186
    • /
    • 2009
  • The objective of this study is ensuring safety of cabin when the blade impacts into a obstacle by verifying safety of the rotor mast and the transmission using impact loads calculated from the simulation. The rotor mast shall not fail and the transmission shall not be displaced into occupiable space when the main rotor composite blade impact into a 8 inch rigid cylinder in diameter on the outer 10% of the blade at operational rotor speed. To calculate the reaction loads at the spherical bearing and lead-lag damper, blade impact analysis was performed with FE model consist of composite blade, tree(or rigid cylinder) using elastic-plastic with damage material and several contact surfaces which were created to describe a progress of actual failure. Also, the reaction loads were investigated in change of blade rotation speed and pitch angle.

Design of KUH Main Rotor Small-scaled Blade (KUH 주로터 축소 블레이드 설계)

  • Kim, Do-Hyung;Kim, Seung-Ho;Han, Jung-Ho
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.32-41
    • /
    • 2009
  • In this study, scale-down design of full-scale Korean Utility Helicopter (KUH) main rotor blade has been investigated. The scaled model system were designed for the measurement of aerodynamic performance, tip vortex and noise source. For the purpose of considering the same aerodynamic loads, the Mach-scale method has been applied. The Mach-scaled model has the same tip Mach number, and it also has the same normalized frequencies. That is, the Mach-scaled model is analogous to full-scale model in the view point of aerodynamics and structural dynamics. Aerodynamic scale-down process could be completed just by adjusting scaling dimensions and increasing rotating speed. In the field of structural dynamics, design process could be finished by confirming the rotating frequencies of the designed blade with the stiffness and inertial properties distributions produced by sectional design. In this study, small-scaled blade sectional design were performed by applying domestic composite prepregs and structural dynamic characteristics of designed model has been investigated.

  • PDF

Design and Performance Analysis of Steam Turbine for Variations of Degree of Reaction (반동도에 따른 증기터빈의 설계 및 성능해석)

  • Shin, Jung-Ha;Lee, Geun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1391-1398
    • /
    • 2011
  • Design and performance analysis of a steam turbine for variations of degree of reaction were performed by computer simulation. Design parameters such as blade angles, exit areas, and heights of the nozzle and moving blade were represented as functions of the degree of reaction. The main performance factors such as turbine power, diagram efficiency, and axial thrust were also expressed in terms of the degree of reaction. For further information about the design and performance, the blade angles and main performance factors were investigated as functions of the flow coefficient. The turbine power and diagram efficiency reached a maximum value for a given degree of reaction and flow coefficient, and the symmetric shape of the moving blade showed distortion as the degree of reaction was increased.