• Title/Summary/Keyword: main blade

Search Result 264, Processing Time 0.025 seconds

A study of Main Rotor Blade Tip shape and analysis of flow around Main Rotor Blade Tip (Main Rotor Blade Tip 형상 변화에 따른 유동분석)

  • Kim, Se-Il
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.382-386
    • /
    • 2013
  • 본 연구에서는 Main Rotor Blade Tip 형상 변화에 따른 후류해석을 통해 와류 생성 및 주변 유동을 분석하여 블레이드 팁 형상의 변화가 와류 간섭을 감소시키는지의 여부를 확인하였다. EDISON CFD를 이용하여 블레이드 Blade Tip 형상에 따라 유동이 어떻게 나타나며, Blade 후류의 압력과 점성의 변화를 분석하여 와류의 양상을 해석하였다. 비교 Blade 형상은 2세대 긴 직사각형 모형, KUH 수리온의 Blade, 유로콥터사의 'Blue Edge'로 비교적 최근에 개발된 대표적인 Blade Tip 형상 3개로 정하였다. 결과를 토대로 블레이드 뒷전의 와류흐름 양상을 확인하여 블레이드 와류 간섭현상의 감소를 확인하였다.

  • PDF

A Study of Vertical Axis Wind Turbine (수직축 풍력터빈에 관한 연구)

  • park, Jung-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.5
    • /
    • pp.389-395
    • /
    • 2017
  • This paper showed the difference in the optimum conditions by using the ANSYS CFX simulation program with the changes of the main-blade angle and sub-blade angle. Main-blade Shape 4,which had angle $45^{\circ}$ while other Shapes with angle $0^{\circ}$, was increased to 157.2[%] to 263.2[%] in the power and was increased to 110[%] to 250[%] in the power coefficient. Moreover, when the Shape 5 Fin length of main-blade doubled, the power was 70.8[%] when compared with Shape 1 and 27.5[%] with shape 4.If the main-blade geometry equals shape 1 in the case structure, The power of Case1 was increased to 13.3[%] when compared with Case2. Also, the power coefficient was increased to 15.4[%]. When sub-blade angle was $45^{\circ}$, main-blade was better than the Fin type than the Bended type. The power of Case4 was increased to 47[%] when compared with Csae1 and increased to 13.6[%] with Case 3. Also, the power coefficient was 46.7[%] when compared with Case 1 and 15.8[%] with Case 3.

A Study on PU Strip Quality Improvement through a Change of Primer-process for SURION Main Rotor Blade (수리온 주로터 블레이드 프라이머 공정변경을 통한 PU Strip 품질 향상에 관한 연구)

  • Lee, Yoon-Woo;Kim, Young-Jin;Seo, Young-Jin;Kim, Min-Ho
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.3
    • /
    • pp.401-415
    • /
    • 2019
  • Purpose: When the SURION Aircraft operated in the fields, cracks are found in PU(polyurethane) Strip on main rotor blade. This study has been conducted to explain PU(polyurethane) Strip crack phenomenon of SURION main rotor blade and to propose useful solution of it by experimental method. Methods: This study considered a lot of factor because the SURION is operated at severe environment. This study investigated the influence of temperature, thermal shock, paint and primer process, PU Strip material, primer material. Results: The results of this study are as follows; The primer process was most excellent influence. The Application of primer having a brittleness caused by a crack of PU Strip. Other factors have influenced on the PU Strip, but they can not be controlled because they are related to the SURION's operating environment. Conclusion: The Quality of PU Strip on SURION main rotor blade was improved through removing the primer process. Finally, the reliability of main rotor blade was guaranteed through improving the quality of PU Strip.

A Study on Air Flow Analysis in Vertical-axis Wind Turbine (수직축 풍력터빈의 유동해석에 관한 연구)

  • Lee, Ki-Seon;Park, Jung-Cheul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.158-162
    • /
    • 2017
  • This paper did basic study on the vertical-axis wind turbine. Namely, This paper was try to find the optimum conditions by using the ANSYS CFX simulation program through the changes of the main-blade angle and sub-blade angle. Main-blade Shape #4 angle $45^{\circ}$ compared to others Shape angle $0^{\circ}$ was increased by 157.2[%] to 263.2[%] in the power output and was increased by 110[%] to 250[%] in the power coefficient. Also, when the Shape #5 Fin length of main-blade doubles, because the power output was 70.8[%] compared to Shape #1 and 27.5[%] compared to Shape #4, and the power coefficient was 60[%] compared to Shape #1 and 28.6[%] compared to Shape #4, the power output and the power efficiency were rather reduced. The output current of Shape #4 was increased 109.9[%] compared to Shape #1 and increased 250[%] compared to Shape #5, and The output voltage of Shape #4 was increased 22.5[%] compared to Shape #1 and increased 3.7[%] compared to Shape #4.

Design of Mach-Scale Blade for LCH Main Rotor Wind Tunnel Test (소형민수헬기 주로터 풍동시험을 위한 마하 스케일 블레이드 설계)

  • Kee, YoungJung;Park, JoongYong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.159-166
    • /
    • 2018
  • In this study, the internal structural design, dynamic characteristics and load analyses of the small scaled rotor blade required for LCH(Light Civil Helicopter) main rotor wind tunnel test were carried out. The test is performed to evaluate the aerodynamic performance and noise characteristics of the LCH main rotor system. Therefore, the Mach-scale technique was appled to design the small scaled blade to simulate the equivalent aerodynamic characteristics as the full scale rotor system. It is necessary to increase the rotor speed to maintain the same blade tip speed as the full scale blade. In addition, the blade weight, section stiffness, and natural frequency were scaled according to the Mach-type scaling factor(${\lambda}$). For the design of skin, spar, torsion box, which are the main components of the blade, carbon and glass fiber composite materials were adopted, and composite materials are prepreg types that can be supplied domestically. The KSec2D program was used to evaluate the section stiffness of the blade. Also, structural loads and dynamic characteristics of the Mach scale blade were investigated through the comprehensive rotorcraft analysis program CAMRADII.

A Study of Wind Turbine by Using ANSYS Program (ANSYS 프로그램을 이용한 풍력발전에 관한 연구)

  • Lee, Dal-Ho;Park, Jung-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.565-571
    • /
    • 2018
  • This paper designed the main blade in V-shape and tried to identify the design conditions by changing the main blade number and sub-blade number. Power output and power coefficient increased as main blade number increased. Sample 2 shows a 50% increase in power output compared to sample1. Sample 3 and sample4 increased by 92.8% and 114.7%, respectively. Sample 2 shows a 38.4% increase in power coefficient compared to sample1. Sample 3 and sample4 increased by 92.3% and 107.7%, respectively. Power output and power coefficient increased as sub-blade number increased. Sample 6 shows a 33.3% increase in power output compared to sample 5 and Sample 7 increased by 42.1%. Compared to sample5, efficiency increased by 35.3% for sample 5 and 47.1% for sample 7. The highest power output and power coefficient were measured when main blade and sub-blade were each 30 number. Sample 8 increased power output by 5.6% and power efficiency by 3.7% compared to sample 4. Compared to sample 7, sample 8 increased power efficiency by 12% and power output by 17.3%.

Numerical Investigation of Aerodynamic Interference in Complete Helicopter Configurations

  • Lee, Hee-Dong;Yu, Dong-Ok;Kwon, Oh-Joon;Kang, Hee-Jung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.190-199
    • /
    • 2011
  • Unsteady flow simulations of complete helicopter configurations were conducted, and the flow fields and the aerodynamic interferences between the main rotor, fuselage, and tail rotor were investigated. For these simulations, a three-dimensional flow solver based on unstructured meshes was used, coupled with an overset mesh technique to handle relative motion among those components. To validate the flow solver, calculations were made for a UH-60A complete helicopter configuration at high-speed and low-speed forward flight conditions, and the unsteady airloads on the main rotor blade were compared to available flight test data and other calculated results. The results showed that the fuselage changed the rotor inflow distribution in the main rotor blade airloads. Such unsteady vibratory airloads were produced on the fuselage, which were nearly in-phase with the blade passage over the fuselage. The flow solver was then applied to the simulation of a generic complete helicopter configuration at various flight conditions, and the results were compared with those of the CAMRAD-II comprehensive analysis code. It was found that the main rotor blades strongly interact with a pair of disk-vortices at the outer edge of the rotor disk plane, which leads to high pulse airloads on the blade, and these airloads behave differently depending on the specific flight condition.

A Study on Failure Analysis of Low Pressure Turbine Blade Subject to Fatigue Load (피로하중을 받은 저압 터빈 블레이드의 파손해석에 관한 연구)

  • 홍순혁;이동우;조석수;주원식
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.298-304
    • /
    • 2001
  • Turbine blade is subject to force of three types ; the torsional force by torsional mount, the centrifugal force by the rotation of rotor and the cyclic bending force by steam pressure. The cyclic bending force was a main factor on fatigue strength. SEM fractography in root of turbine blade showed micro-clack width was not dependent on stress intensity factor range. Especially, fatigue did not exist on SEM photograph in root of turbine blade. To clear out the fracture mechanism of turbine blade, nanofractography was needed on 3-dimensional crack initiation and crack growth with high magnification. Fatigue striation partially existed on AFM photograph in root of turbine blade. Therefore, to find a fracture mechanism of the torsion-mounted blade in nuclear power plant, the relation between stress intensity factor range and surface roughness measured by AFM was estimated, and then the load amplitude ΔP applied to turbine blade was predicted exactly by root mean square roughness.

  • PDF

Blade Development and Test of WinDS$3000^{TM}$ System (WinDS$3000^{TM}$ 시스템의 블레이드 개발 및 시험)

  • Lee, Sang-Il;Lee, Kyeong-Woo;Joo, Wan-Don;Lee, Ki-Hak;Park, Jong-Po
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.448-448
    • /
    • 2009
  • A new blade has been developed to apply to Doosan 3MW offshore wind turbine named as WinDS3000TM. The 3MW blade has been designed by the concept of slim external shape and optimized structure. High-performance glass fiber reinforced epoxy composites were used as the main material of the blade. The blade was manufactured using vacuum infusion process in order to increase the fiber volume fraction and to reduce micro-porosities. The blade has successfully passed the full-scale blade static test for certification. During the test, micro-failure signal and strain change of the blade were measured using acoustic emission sensors and strain gages. The blade has robust structure and weighs lighter compared to conventional blade since the new blade was designed by optimization process. The 3MW blade will be commercially applied to WinDS$3000^{TM}$ in 2010.

  • PDF

Mathematical Model for the Effect of Blade Friction on the Performance of Pelton Turbine

  • Atthanayake, Iresha Udayangani;Sugathapala, Thusitha;Fernando, Rathna
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.4
    • /
    • pp.396-409
    • /
    • 2011
  • Water turbines have been used in electricity generation for well over a century. Hydroelectricity now supplies 19% of world electricity. Many hydro power plants are operated with Pelton turbines, which is an impulse turbine. The main reasons for using impulse turbines are that they are very simple and relatively cheap. As the stream flow varies, water flow to the turbine can be easily controlled by changing the number of nozzles or by using adjustable nozzles. Scientific investigation and design of turbines saw rapid advancement during last century. Most of the research that had been done on turbines were focused on improving the performance with particular reference to turbine components such as shaft seals, speed increasers and bearings. There is not much information available on effects of blade friction on the performance of turbine. The main focus in this paper is to analyze the performance of Pelton turbine particularly with respect to their blade friction.