• Title/Summary/Keyword: magnitude estimation

Search Result 541, Processing Time 0.032 seconds

Robust Visual Odometry System for Illumination Variations Using Adaptive Thresholding (적응적 이진화를 이용하여 빛의 변화에 강인한 영상거리계를 통한 위치 추정)

  • Hwang, Yo-Seop;Yu, Ho-Yun;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.738-744
    • /
    • 2016
  • In this paper, a robust visual odometry system has been proposed and implemented in an environment with dynamic illumination. Visual odometry is based on stereo images to estimate the distance to an object. It is very difficult to realize a highly accurate and stable estimation because image quality is highly dependent on the illumination, which is a major disadvantage of visual odometry. Therefore, in order to solve the problem of low performance during the feature detection phase that is caused by illumination variations, it is suggested to determine an optimal threshold value in the image binarization and to use an adaptive threshold value for feature detection. A feature point direction and a magnitude of the motion vector that is not uniform are utilized as the features. The performance of feature detection has been improved by the RANSAC algorithm. As a result, the position of a mobile robot has been estimated using the feature points. The experimental results demonstrated that the proposed approach has superior performance against illumination variations.

Estimation of Interfacial Adhesion through the Micromechanical Analysis of Failure Mechanisms in DLC Film

  • Jeong, Jeung-Hyun;Park, Hae-Seok;Ahn, Jeong-Hoon;Dongil Kwon
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.73-81
    • /
    • 1997
  • In this paper, it is intended to present more reproducible and quantitative method for adhesion assemssement. In scratch test, micromechanical analysis on the stress state beneath the indenter was carried out considering the additional blister field. The interface adhesion was quantified as work of adhesion through Griffith energy approach on the basis of the analyzed stress state. The work of adhesion for DLC film/WC-Co substrate calculated through the proposed analysis shows the identical value regardless of distinctly different critical loads measured with the change of film thickness and scratching speed. On the other hand, uniaxial loading was imposed on DCL film/Al substrate, developing the transverse film cracks perpendicular to loading direction. Since this film cracking behavior depends on the relative magnitude of adhesion strength to film fracture strength, the quantification of adhesion strength was given a trial through the micromechanical analysis of adhesion-dependence of film cracking patterns. The interface shear strength can be quantified from the measurement of strain $\varepsilon$s and crack spacing $\lambda$ at the cessation of film cracking.

  • PDF

Temperature Control of Electric Furnaces using Adaptive Time Optimal Control (적응최적시간제어를 사용한 전기로의 온도제어)

  • Jeon, Bong-Keun;Song, Chang-Seop;Keum, Young-Tag
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.120-127
    • /
    • 2009
  • An electric furnace, inside which desired temperatures are kept constant by generating heat, is known to be a difficult system to control and model exactly because system parameters and response delay time vary as the temperature and position are changed. In this study the heating system of ceramic drying furnaces with time-varying parameters is mathematically modeled as a second order system and control parameters are estimated by using a RIV (Recursive Instrumental-Variable) method. A modified bang-bang control with magnitude tuning is proposed in the time optimal temperature control of ceramic drying electric furnaces and its performance is experimentally verified. It is proven that temperature tracking of adaptive time optimal control using a second order model is more stable than the GPCEW (Generalized Predictive Control with Exponential Weight) and rapidly settles down by pre-estimation of the system parameters.

Estimation of the Parameters for the Clark Model through the Rainfall-Runoff Events (강우 유출사상을 통한 Clark 모형의 매개변수 평가)

  • Ahn, Tae-Jin;Baek, Chun-Woo;Kim, Min-Hyuk;Choi, Kwang-Hoon;Kang, In-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.770-774
    • /
    • 2006
  • The determination of feasible design flood is the most important to control flood damage in river management. Model parameters should be calibrated using observed discharge but due to deficiency of observed data the parameters have been adopted by engineer's empirical sense. Storage coefficient in the Clark unit hydrograph method mainly affects magnitude of peak flood. This study is to estimate the storage coefficients based on the observed rainfall-runoff events at the four stage stations in the Hantan river basin. Model calibration is the process of adjusting model parameter values until model results match historical data. An objective function which is the percent difference between the observed and computed peak flows is available for measuring the goodness-of-fit between computed and observed hydrographs. By sensitivity analysis for the storage coefficient, it has been shown that the storage coefficients affect the peak flows. The Clark parameters adopted in the River Rectification Basic Plan have been estimated through an iterative process designed to produce a hydrograph with the peak flow.

  • PDF

Maximum Torque Control of Induction Motor Drive using Multi-HBPI Controller (다중 HBPI 제어기를 이용한 유도전동기 드라이브의 최대토크 제어)

  • Kang, Sung-Jun;Ko, Jae-Sun;Choi, Jung-Sik;Baek, Jeong-Woo;Jang, Mi-Geum;Kim, Soon-Young;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.363-366
    • /
    • 2009
  • The maximum output torque developed by the machine is dependent on the allowable current rating and maximum voltage that the inverter can supply to the machine. Therefore, to use the inverter capacity fully, it is desirable to use the control scheme considering the voltage and current limit condition, which can yield the maximum torque per ampere over the entire speed range. This controller is controlled speed and current using hybrid PI(HBPI) controller and estimation of speed using ANN. Also, this paper is proposed control of maximum torque per ampere(MTPA) of induction motor. This strategy is proposed which is simple in structure and has the honest goal of minimizing the stator current magnitude for given load torque. The performance of the proposed induction motor drive with maximum torque control using HBPI controller is verified by analysis results at dynamic operation conditions.

  • PDF

Microstructure and shear modulus in concentrated dispersions of bidisperse charged spherical colloids

  • Chun, Myung-Suk;Lee, Sangwoo;Lee, Tae-Seok;Cho, Jae-Seol
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.1
    • /
    • pp.17-26
    • /
    • 2004
  • We examine rigorous computations on microstructural as well as rheological properties of concentrated dispersions of bidisperse colloids. The NVT Monte Carlo simulation is applied to obtain the radial distribution function for the concentrated system. The long-range electrostatic interactions between dissimilar spherical colloids are determined using the singularity method, which provides explicit solutions to the linearized electrostatic field. The increasing trend of osmotic pressure with increasing total particle concentration is reduced as the concentration ratio between large and small particles is increased. From the estimation of total structure factor, we observe the strong correlations developed between dissimilar spheres. As the particle concentration increases at a given ionic strength, the magnitude of the first peak in structure factors increases and also moves to higher wave number values. The increase of electrostatic interaction between same charged particles caused by the Debye screening effect provides an increase in both the osmotic pressure and the shear modulus. The higher volume fraction ratio providing larger interparticle spacing yields decreasing high frequency limit of the shear modulus, due to decreasing the particle interaction energy.

Workload Evaluation of Squatting Work Postures (쪼그려 앉은 작업자세에서의 작업부하 평가)

  • Lee, In-Seok;Chung, Min-Keun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.2
    • /
    • pp.167-173
    • /
    • 1998
  • Many workers like welders work in squatting postures with the object on the ground during an entire work shift. It is suspected that such prolonged squatting without any supporting stool would gradually cause musculoskeletal injuries to workers. This study is to examine the physical stress caused by the prolonged squatting and to recommend a safe work/rest schedule for a welding task with squatting posture based on the lab experiments. In this study, 8 healthy student subjects participated in the experiment. They maintained a squatting work posture for 16 minutes with 4 different stool height conditions: no stool; 10cm height; 15cm height; and 20cm height. Every 2 minutes, the discomfort was subjectively assessed with the magnitude estimation method for the whole body, lower back, upper leg and lower leg. Based on discomfort ratings, we found that a 10cm height stool relieved the workload most. Discomfort rating results also indicated that a 20cm height stool showed the highest workload, and the there were no difference in workload between a 15cm height stool and no stool. We recommend to use low height stools and to maintain such working postures no longer than 6 minutes for prolonged squatting tasks.

  • PDF

Development of Satisfaction Models for Passenger Car Interior Materials Considering Statistical, Technical, and Practical Aspects of Design Variables (설계변수의 통계적.기술적.실질적 측면을 고려한 자동차 내장재질의 만족도 모형 개발)

  • You, Hee-Cheon;Ryu, Tae-Beum;Oh, Kyung-Hee;Yun, Myung-Hwan;Kim, Kwang-Jae
    • IE interfaces
    • /
    • v.17 no.4
    • /
    • pp.482-489
    • /
    • 2004
  • As the functional characteristics of passenger cars have reached to a satisfactory level, customers place more concerns with the aesthetic aspects of interior designs. The present study developed satisfaction models of passenger car interior materials for six parts including crash pad, steering wheel, transmission gearshift knob, audio panel, metal grain, and wooden grain. Eight to fifteen material design variables such as color, embossing, and smoothness were defined for the six interior parts based on literature survey, customer reviews, and expert opinions. A satisfaction survey was conducted for 30 vehicles with 30 participants ($mean{\pm}SD$ of age = $28.7{\pm}6.6$) by using a modified magnitude estimation scale. Based on the survey results, the material design variables were screened from statistical, technical, and practical aspects. With the screened variables, satisfaction models were developed by using the quantification I method for the six interior parts, indicating the importance of material design variables and preferred material properties.

Performance Estimation of Magneto-rheological Brake with Different Magnetic Core Shapes (자기 코어 형상에 따른 MR 브레이크의 성능 예측)

  • Park, Jiong Min;Choi, Seung-Bok;Sohn, Jung Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.2
    • /
    • pp.175-181
    • /
    • 2017
  • In the present work, to achieve high braking performance with restricted size, characteristics of magneto-rheological (MR) fluid brake is numerically investigated considering different magnetic core shapes. As a first step, structural configuration of the MR brakes are proposed with four different magnetic core shapes, such as single flat, single inclined, dual flat and dual inclined. To estimate braking performance of the proposed MR brakes, electromagnetic analysis is carried out and the results of magnetic field intensity distribution are observed. Based on the electromagnetic analysis results, braking torque of the MR brake is estimated according to magnitude of current input and results are discussed. It is observed that enhanced braking torque can be achieved by adopting the modified magnetic core shape under limited small size of the MR brake.

The Position Control of DC Motor using the System Modeling based on the DFT (DFT 기반의 시스템 모델링을 이용한 DC Motor의 위치제어)

  • Ahn, Hyun-Jin;Shim, Kwan-Shik;Lim, Young-Cheol;Nam, Hae-Kon;Kim, Gwang-Heon;Kim, Eui-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.542-548
    • /
    • 2012
  • This study presents a new method of system modeling by using the Discrete Fourier Transform for the position control system of DC Motor. And the proposed method is similar to the method of System Identification by analysis of correlation of the measured input-output data. The measured output signals are transformed to the frequency domain using DFT. The Fourier Spectrum of the transformed signals is used for knowing to the feature of having an important effect on the system. And transfer function of the second order system is estimated by the dominant parameter which is computed in the magnitude and the phase of Fourier spectrum of the transformed signals. In addition, the output signal includes the unique feature of system. So, although the basic parameter of the system is unknown for us, the proposed method has an advantage to system modeling. And the controller is easily designed by the estimated transfer function. Thus, in this paper, the proposed method is applied to the system modeling for the position control system of DC Motor and the PD-controller is designed by the estimated model. And the efficiency and the reliability of the proposed method are verified by the experimental result.