• Title/Summary/Keyword: magnitude estimation

Search Result 539, Processing Time 0.02 seconds

Evaluation of Thermal Conductivity for Grout/Soil Formation Using Thermal Response Test and Parameter Estimation Models (열응답 시험과 변수 평가 모델을 이용한 그라우트/토양 혼합층의 열전도도 산정)

  • Sohn Byong Hu;Shin Hyun Jun;An Hyung Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.173-182
    • /
    • 2005
  • The Performance of U-tube ground heat exchanger for geothermal heat Pump systems depends on the thermal properties of the soil, as well as grout or backfill materials in the borehole. In-situ tests provide a means of estimating some of these properties. In this study, in-situ thermal response tests were completed on two vertical boreholes, 130 m deep with 62 mm diameter high density polyethylene U-tubes. The tests were conducted by adding a monitored amount of heat to water over a $17\~18$ hour period for each vertical boreholes. By monitoring the water temperatures entering and exiting the loop and heat load, overall thermal conductivity values of grout/soil formation were determined. Two parameter estimation models for evaluation of thermal response test data were compared when applied on the same temperature response data. One model is based on line-source theory and the other is a numerical one-dimensional finite difference model. The average thermal conductivity deviation between measured data and these models is of the magnitude $1\%$ to $5\%$.

Probabilistic Distribution of Displacement Response of Frictionally Damped Structures under Earthquake Loads (지진하중을 받는 마찰형 감쇠를 갖는 구조물의 변위 응답 확률 분포)

  • Lee, Sang-Hyun;Park, Ji-Hun;Youn, Kyung-Jo;Min, Kyung-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.639-644
    • /
    • 2007
  • The accurate peak response estimation of a seismically excited structure with frictional damping system(FDS) is very difficult since the structure with FDS shows nonlinear behavior dependent on the structural period, loading characteristics, and relative magnitude between the frictional force and the excitation load. Previous studies have estimated that by replacing a nonlinear system with an equivalent linear one or by employing the response spectrum obtained based on nonlinear time history and statistical analysis. In the case that on earthquake load is defined with probabilistic characteristics, the corresponding response of the structure with FDS has probabilistic distribution. In this study, nonlinear time history analyses were performed for the structure with FDS subjected to artificial earthquake loads generated using Kanai-Tajimi filter. An equation for the probability density function (PDF) of the displacement response is proposed by adapting the PDF of the normal distribution. Finally, coefficients of the proposed PDF is obtained by regression analysis of the statistical distribution of the time history responses. Finally, the correlation between PDFs and statistical response distribution is presented.

  • PDF

One-Way Delay Estimation Using One-Way Delay Variation and Round-Trip Time (단방향 지연 변이와 일주 지연을 이용한 양단간의 단방향 지연 추정)

  • Kim, Dong-Keun;Lee, Jai-Yong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.1
    • /
    • pp.175-183
    • /
    • 2008
  • QoS-support technology in networks is based on measuring QoS metrics which reflect a magnitude of stability and performance. The one-way delay measurement of the QoS metrics especially requires a guarantee of clock synchronization between end-to-end hosts. However, the hosts in networks have a relative or absolute difference in clock time by reason of clock offsets. flock skews and clock adjustments. In this paper, we present a theorem, methods and simulation results of one-way delay and clock offset estimations between end-to-end hosts. The proposed theorem is a relationship between one-way delay, one-way delay variation and round-trip time And we show that the estimation error is mathematically smaller than a quarter of round-trip time.

  • PDF

Performance Improvement of an Extended Kalman Filter Using Simplified Indirect Inference Method Fuzzy Logic (간편 간접추론 방식의 퍼지논리에 의한 확장 칼만필터의 성능 향상)

  • Chai, Chang-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.131-138
    • /
    • 2016
  • In order to improve the performance of an extended Kalman filter, a simplified indirect inference method (SIIM) fuzzy logic system (FLS) is proposed. The proposed FLS is composed of two fuzzy input variables, four fuzzy rules and one fuzzy output. Two normalized fuzzy input variables are the variance between the trace of a prior and a posterior covariance matrix, and the residual error of a Kalman algorithm. One fuzzy output variable is the weighting factor to adjust for the Kalman gain. There is no need to decide the number and the membership function of input variables, because we employ the normalized monotone increasing/decreasing function. The single parameter to be determined is the magnitude of a universe of discourse in the output variable. The structure of the proposed FLS is simple and easy to apply to various nonlinear state estimation problems. The simulation results show that the proposed FLS has strong adaptability to estimate the states of the incoming/outgoing moving objects, and outperforms the conventional extended Kalman filter algorithm by providing solutions that are more accurate.

In-process Immersion Ratio Estimation Using Spindle Motor Current during Face Milling (정면밀링공정중 추축모터전류를 이용한 절입비의 실시간 추정)

  • 조규진;오영탁;권원태;주종남
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.57-64
    • /
    • 2000
  • In order to regulate cutting torque in milling, monitoring system should be set to a certain threshold. Radial immersion ratio is an important factor to determine the threshold and should be estimated in process for automatic regulation. In this paper, on-line estimation of the radial immersion ratio using spindle motor current in face milling is presented. When a tooth finishes sweeping, a sudden drop of cutting torque occurs. This torque drop is equal to the cutting torque acting on a single tooth at the swept angle of cut and can be acquired from cutting torque signals. Average cutting torque per revolution can also be calculated from cutting torque signals. The ratio of cutting torque acting on a single tooth at the swept angle of cut to the average cutting torque per revolution is a function of the swept angle of cut and the number of teeth. Using the magnitude of this ratio, the radial immersion ratio is estimated. Identical algorithm is adopted to estimate the immersion ratio based on the spindle motor current measurement. The experiments performed under different cutting conditions show that the radial immersion ratio can be estimated within 10% error range by the proposed method using spindle motor current. Varying immersion ratio is also estimated well using the presented algorithm.

  • PDF

An Adaptive Wind Noise Reduction Method Based on a priori SNR Estimation for Speech Eenhancement (음성 강화를 위한 a priori SNR 추정기반 적응 바람소리 저감 방법)

  • Seo, Ji-Hun;Lee, Seok-Pil
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1756-1760
    • /
    • 2015
  • This paper focuses on a priori signal to noise ratio (SNR) estimation method for the speech enhancement. There are many researches for speech enhancement with several ambient noise cancellation methods. The method based on spectral subtraction (SS) which is widely used in noise reduction has a trade-off between the performance and the distortion of the signals. So the need of adaptive method like an estimated a priori SNR being able to making a high performance and low distortion is increasing. The decision directed (DD) approach is used to determine a priori SNR in noisy speech signals. A priori SNR is estimated by using only the magnitude components and consequently follows a posteriori SNR with one frame delay. We propose a modified a priori SNR estimator and the weighted rational transfer function for speech enhancement with wind noises. The experimental result shows the performance of our proposed estimator is better Perceptual Evaluation of Speech Quality scores (PESQ, ITU-T P.862) compare to the conventional DD approach-based systems and different noise reduction methods.

Implementation of Chip and Algorithm of a Speech Enhancement for an Automatic Speech Recognition Applied to Telematics Device (텔레메틱스 단말용 음성 인식을 위한 음성향상 알고리듬 및 칩 구현)

  • Kim, Hyoung-Gook
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.5
    • /
    • pp.90-96
    • /
    • 2008
  • This paper presents an algorithm of a single chip acoustic speech enhancement for telematics device. The algorithm consists of two stages, i.e. noise reduction and echo cancellation. An adaptive filter based on cross spectral estimation is used to cancel echo. The external background noise is eliminated and the clear speech is estimated by using MMSE log-spectral magnitude estimation. To be suitable for use in consumer electronics, we also design a low cost, high speed and flexible hardware architecture. The performance of the proposed speech enhancement algorithms were measured both by the signal-to-noise ratio(SNR) and recognition accuracy of an automatic speech recognition(ASR) and yields better results compared with the conventional methods.

  • PDF

Earthquake Loss Estimation Including Regional Characteristics (지역특성을 반영한 지진손실평가)

  • Kim, Joon-Hyung;Hong, Yun-Su;Yu, Eunjong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.311-320
    • /
    • 2023
  • When an earthquake occurs, the severity of damage is determined by natural factors such as the magnitude of the earthquake, the epicenter distance, soil properties, and type of the structures in the affected area, as well as the socio-economic factors such as the population, disaster prevention measures, and economic power of the community. This study evaluated the direct economic loss due to building damage and the community's recovery ability. Building damage was estimated using fragility functions due to the design earthquake by the seismic design code. The usage of the building was determined from the information in the building registrar. Direct economic loss was evaluated using the standard unit price and estimated building damage. The standard unit price was obtained from the Korean Real Estate Board. The community's recovery capacity was calculated using nine indicators selected from regional statistical data. After appropriate normalization and factor analysis, the recovery ability score was calculated through relative evaluation with neighboring cities.

A Study on Estimation of a Beat Spectrum in a FMCW Radar (FMCW 레이다에서의 비트 스펙트럼 추정에 관한 연구)

  • Lee, Jong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2511-2517
    • /
    • 2009
  • Recently, a FMCW radar is used for the various purposes in the short range detection and tracking of targets. The main advantages of a FMCWradar are the comparative simplicity of implementation and the low peak power transmission characterizing the very low probability of signal interception. Since it uses the frequency modulated continuous wave for transmission and demodulation, the received beat frequency represents the range and Doppler information of targets. Detection and extraction of useful information from targets are performed in this beat frequency domain. Therefore, the resolution and accuracy in the estimation of a beat spectrum are very important. However, using the conventional FFT estimation method, the high resolution spectrum estimation with a low sidelobe level is not possible if the acquisition time is very short in receiving target echoes. This kind of problems deteriorates the detection performance of adjacent targets having the large magnitude differences in return echoes and also degrades the reliability of the extracted information. Therefore, in this paper, the model parameter estimation methods such as autoregressive and eigenvector spectrum estimation are applied to mitigate these problems. Also, simulation results are compared and analyzed for further improvement.

Flood Damage Estimation causing Backwater due to the Blockage by Debris in the Bridges (교량에 집적된 유송잡물의 배수영향에 의한 홍수피해 분석)

  • Kim, Soo-Jun;Chung, Jae-Hak;Lee, Jong-Seol;Kim, Ji-Tae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.4
    • /
    • pp.59-66
    • /
    • 2007
  • The bridge crossing river is the one of the major factors causing backwater level rising. Furthermore, the bridges in the mountainous areas increase the flood damage in the upstream of the bridge due to the blockage by debris. In this research, the effects of debris to the magnitude of flood damage in the study river basin were simulated by using HEC-RAS and HEC-GeoRAS models. With assumption that the backwater caused by debris blocking the space between bridge piers is the only factor causing inundation, the unsteady flow simulation was carried out with various case studies. The potential inundation area with the overflow locations and volumes could be estimated as the results of simulation. However, the simulation results also reveal the limitations of inaccurate estimation of inundation area and depth. To overcome these hindrances, DEM and satellite images were applied to the simulation. By readjusting the inundation area using digital maps and satellite images and calibrating overflow volume and depth using DEM, the accuracy of simulation could be increased resulting more accurate flood damage estimation.