• Title/Summary/Keyword: magnification

Search Result 692, Processing Time 0.021 seconds

Development of a mouse model for pulp-dentin complex regeneration research: a preliminary study

  • Kim, Sunil;Lee, Sukjoon;Jung, Han-Sung;Kim, Sun-Young;Kim, Euiseong
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.2
    • /
    • pp.20.1-20.8
    • /
    • 2019
  • Objectives: To achieve pulp-dentin complex regeneration with tissue engineering, treatment efficacies and safeties should be evaluated using in vivo orthotopic transplantation in a sufficient number of animals. Mice have been a species of choice in which to study stem cell biology in mammals. However, most pulp-dentin complex regeneration studies have used large animals because the mouse tooth is too small. The purpose of this study was to demonstrate the utility of the mouse tooth as a transplantation model for pulp-dentin complex regeneration research. Materials and Methods: Experiments were performed using 7-week-old male Institute of Cancer Research (ICR) mice; a total of 35 mice had their pulp exposed, and 5 mice each were sacrificed at 1, 2, 4, 7, 9, 12 and 14 days after pulp exposure. After decalcification in 5% ethylenediaminetetraacetic acid, the samples were embedded and cut with a microtome and then stained with hematoxylin and eosin. Slides were observed under a high-magnification light microscope. Results: Until 1 week postoperatively, the tissue below the pulp chamber orifice appeared normal. The remaining coronal portion of the pulp tissue was inflammatory and necrotic. After 1 week postoperatively, inflammation and necrosis were apparent in the root canals inferior to the orifices. The specimens obtained after experimental day 14 showed necrosis of all tissue in the root canals. Conclusions: This study could provide opportunities for researchers performing in vivo orthotopic transplantation experiments with mice.

Evaluation of marginal adaptation in three-unit frameworks fabricated with conventional and powder-free digital impression techniques

  • Kocaagaoglu, Hasan;Albayrak, Haydar;Sahin, Sezgi Cinel;Gurbulak, Aysegul Guleryuz
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.5
    • /
    • pp.262-270
    • /
    • 2019
  • PURPOSE. The purpose of this in vitro study was to evaluate the marginal misfits of three-unit frameworks fabricated with conventional and digital impressions techniques. MATERIALS AND METHODS. Thirty brass canine and second premolar abutment preparations were fabricated by using a computer numerical control machine and were randomly divided into 3 groups (n=10) as follows: conventional impression group (Group Ci), Cerec Omnicam (Group Cdi), and 3shape TRIOS-3 (Group Tdi) digital impression groups. The laser-sintered metal frameworks were designed and fabricated with conventional and digital impressions. The marginal adaptation was assessed with a stereomicroscope at ${\times}30$ magnification. The data were analyzed with 1-way analysis of variances (ANOVAs) and the independent simple t tests. RESULTS. A statistically significant difference was found between the frameworks fabricated by conventional methods and those fabricated by digital impression methods. Multiple comparison results revealed that the frameworks in Group Ci (average, $98.8{\pm}16.43{\mu}m$; canine, $93.59{\pm}16.82{\mu}m$; premolar, $104.10{\pm}15.02{\mu}m$) had larger marginal misfit values than those in Group Cdi (average, $63.78{\pm}14.05{\mu}m$; canine, $62.73{\pm}13.71{\mu}m$; premolar, $64.84{\pm}15.06{\mu}m$) and Group Tdi (average, $65.14{\pm}18.05{\mu}m$; canine, $70.64{\pm}19.02{\mu}m$; premolar, $59.64{\pm}16.10{\mu}m$) (P=.000 for average; P=.001 for canine; P<.001 for premolar). No statistical difference was found between the marginal misfits of canine and premolar abutment teeth within the same groups (P>.05). CONCLUSION. The three-unit frameworks fabricated with digital impression techniques showed better marginal fit compared to conventional impression techniques. All marginal misfit values were clinically acceptable.

Evaluation of sealant microleakage using Swept-Source Optical Coherence Tomography (치면열구전색치아의 미세누출 평가를 위한 Swept-Source Optical Coherence Tomography의 타당도 평가)

  • Nam, Sang-Mi;Ku, Hye-Min;Lee, Eun-Song;Kim, Baek-Il
    • The Journal of the Korean dental association
    • /
    • v.56 no.12
    • /
    • pp.686-694
    • /
    • 2018
  • Purpose: The aim of this study was to evaluate the validity of swept-source optical coherence tomography (SS-OCT) for detecting sealant microleakage. Materials and Methods: A total of 31 extracted sound human molar, assigned as suitable for sealant application, were chosen and divided into two groups: (1) no microleakage group and (2) microleakage group by applying sealant using the different methods. All specimens were immersed in 1% methylene blue for 24 h and sectioned to confirm the absence or presence of sealant microleakage as a gold standard method. Subsequently, all the sectioned specimens were digitally photographed using a microscope with a magnification of ${\times}50$. Presence of microleakage was evaluated on a 2-point rating scale. The association of histological method with conventional methods (visual and tactile assessment) and SS-OCT was assessed using a chi-squared test. The intra- and inter-examiner reliability was calculated using Cohen's Kappa. Results: The SS-OCT showed a sensitivity of 0.73 and a specificity of 1.00, while visual and tactile assessment showed a sensitivity of 0.67 and a specificity of 0.86. The inter-examiner reliability of SS-OCT was 0.79, whereas that of the visual and tactile assessment was 0.53. Conclusions: SS-OCT can be used to non-invasively detect sealant microleakage and to monitor pit and fissure sealant in the clinics.

  • PDF

Radiation safety for pain physicians: principles and recommendations

  • Park, Sewon;Kim, Minjung;Kim, Jae Hun
    • The Korean Journal of Pain
    • /
    • v.35 no.2
    • /
    • pp.129-139
    • /
    • 2022
  • C-arm fluoroscopy is a useful tool for interventional pain management. However, with the increasing use of C-arm fluoroscopy, the risk of accumulated radiation exposure is a significant concern for pain physicians. Therefore, efforts are needed to reduce radiation exposure. There are three types of radiation exposure sources: (1) the primary X-ray beam, (2) scattered radiation, and (3) leakage from the X-ray tube. The major radiation exposure risk for most medical staff members is scattered radiation, the amount of which is affected by many factors. Pain physicians can reduce their radiation exposure by use of several effective methods, which utilize the following main principles: reducing the exposure time, increasing the distance from the radiation source, and radiation shielding. Some methods reduce not only the pain physician's but also the patient's radiation exposure. Taking images with collimation and minimal use of magnification are ways to reduce the intensity of the primary X-ray beam and the amount of scattered radiation. It is also important to carefully select the C-arm fluoroscopy mode, such as pulsed mode or low-dose mode, for ensuring the physician's and patient's radiation safety. Pain physicians should practice these principles and also be aware of the annual permissible radiation dose as well as checking their radiation exposure. This article aimed to review the literature on radiation safety in relation to C-arm fluoroscopy and provide recommendations to pain physicians during C-arm fluoroscopy-guided interventional pain management.

Analysis of Material Properties According to Compounding Conditions of Polymer Composites to Reduce Thermal Deformation (열변형 저감을 위한 고분자 복합소재 배합 조건에 따른 재료특성 분석)

  • Byun, Sangwon;Kim, Youngshin;Jeon, Euy sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.148-154
    • /
    • 2022
  • As the 4th industrial age approaches, the demand for semiconductors is increasing enough to be used in all electronic devices. At the same time, semiconductor technology is also developing day by day, leading to ultraprecision and low power consumption. Semiconductors that keep getting smaller generate heat because the energy density increases, and the generated heat changes the shape of the semiconductor package, so it is important to manage. The temperature change is not only self-heating of the semiconductor package, but also heat generated by external damage. If the package is deformed, it is necessary to manage it because functional problems and performance degradation such as damage occur. The package burn in test in the post-process of semiconductor production is a process that tests the durability and function of the package in a high-temperature environment, and heat dissipation performance can be evaluated. In this paper, we intend to review a new material formulation that can improve the performance of the adapter, which is one of the parts of the test socket used in the burn-in test. It was confirmed what characteristics the basic base showed when polyamide, a high-molecular material, and alumina, which had high thermal conductivity, were mixed for each magnification. In this study, functional evaluation was also carried out by injecting an adapter, a part of the test socket, at the same time as the specimen was manufactured. Verification of stiffness such as tensile strength and flexural strength by mixing ratio, performance evaluation such as thermal conductivity, and manufacturing of a dummy device also confirmed warpage. As a result, it was confirmed that the thermal stability was excellent. Through this study, it is thought that it can be used as basic data for the development of materials for burn-in sockets in the future.

Comparative evaluation of shear bond strength of orthodontic brackets bonded to three-dimensionally-printed and milled materials after surface treatment and artificial aging

  • Ameer Biadsee;Ofir Rosner;Carol Khalil;Vanina Atanasova;Joel Blushtein;Shifra Levartovsky
    • The korean journal of orthodontics
    • /
    • v.53 no.1
    • /
    • pp.45-53
    • /
    • 2023
  • Objective: This study aimed to evaluate the shear bond strength (SBS) of orthodontic brackets bonded to three-dimensionally (3D)-printed materials after various surface treatments and artificial aging compared with that bonded to computer-aided design/computer-aided manufacturing (CAD-CAM) polymethyl methacrylate (PMMA)-milled materials. Methods: Eighty cylindrical specimens were 3D printed and divided into the following four subgroups (n = 20 each) according to the surface treatment and artificial aging procedure. Group A, sandblasted with 50 ㎛ aluminum oxide particles (SA) and aging; group B, sandblasted with 30 ㎛ silica-coated alumina particles (CO) and aging; group C, SA without aging; and group D, CO without aging. For the control group, 20 CAD-CAM PMMA-milled cylindrical specimens were sandblasted with SA and aged. The SBS was measured using a universal testing machine (0.25 mm/min), examined at ×2.5 magnification for failure mode classification, and statistically analyzed (p = 0.05). Results: The retention obtained with the 3D-printed materials (groups A-D) was higher than that obtained with the PMMA-milled materials (control group). However, no significant difference was found between the study and control groups, except for group C (SA without aging), which showed significantly higher retention than the control group (PMMA-SA and thermocycling) (p = 0.037). Study groups A-D predominantly exhibited a cohesive specimen mode, indicating specimen fracture. Conclusions: Orthodontic brackets bonded to 3D-printed materials exhibit acceptable bonding strengths. However, 3D-printed materials are prone to cohesive failure, which may result in crown fractures.

Evaluation of Marginal and Internal Gap of Temporary Prosthesis Fabricated by 3D Printing Method According to Rinsing Method and Rinsing Time (세척 방법 및 세척 시간에 따른 3D 프린팅 방식으로 제작된 임시 보철물의 변연 및 내면 적합도 평가)

  • Ji-Hyeon Bae;Jae-Won Choi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.561-570
    • /
    • 2023
  • This study was to evaluate the effect of different rinsing times and methods on the accuracy of temporary prostheses fabricated by 3D printing method. Sixty temporary prostheses were fabricated with LCD types of 3D printer(Halot-Sky, Creality, Shenzhen, China) and divided into six groups (n = 10) based on rinsing times and methods. All specimens were rinsed with 99% isopropanol alcohol for 5 and 10 min using three methods-hand washed, ultrasonic cleaning, and automated washing. All specimens were polymerized for 3 minutes under the same conditions. The marginal and internal gaps of specimens were examined using a replica technique. The light-body silicone thickness was measured at 6 reference points(Absolute marginal discrepancy, Marginal, Chamfer, Axial, Angle, and Occlusal gap). All measurements were performed by a stereomicroscope. Reference point images were taken at 100× magnification and then measured using an image analysis program. Statistical analysis was performed using Two-way ANOVA, One-way ANOVA, and the Kruskal-Wallis test (p = .05). The marginal and internal gaps were statistically different according to the rinsing methods and rinsing times(p < .001). In the rinsing time, the temporary prosthesis rinsed for 5 minutes group showed higher accuracy than 10 minutes group. In the rinsing method, the hand washing group showed higher accuracy than the automated washing group.

Deep Inferior Epigastric Perforators Topography for "Island Transverse Rectus Abdominis Musculocutaneous Flap" in Breast Reconstruction

  • Tae Hyun Kim;Seong Heum Jeong;Hee Chang Ahn
    • Archives of Plastic Surgery
    • /
    • v.50 no.4
    • /
    • pp.354-360
    • /
    • 2023
  • Background The Island transverse rectus abdominis musculocutaneous (TRAM) flap is well vascularized with very reliable blood flow, because all perforators of the zone I are included when it is harvested. The number of perforators, topographic mapping, and their relationship with reconstructed outcomes were investigated. Methods Fifty patients with Island TRAM breast reconstruction from September 2021 to August 2022 were investigated. The zone I was divided into a total of eight sections. Under the loupe magnification, all perforators larger than 0.5 mm in zone I were counted with fine dissection, and photographs were taken in background of vessel loops. Complications like flap necrosis, seroma, and hematoma were also investigated. Result There are 12 ideal perforators on average in zone I such as one perforator in section I, II, IV, V, VI, VIII, and three perforators in section III and VII. However, two perforators (M6 and L6) below arcuate line were sacrificed in the time of flap harvest to prevent hernia. Island TRAM included 10 perforators on average (5 perforators in each side) above arcuate line to be transferred to the recipient site. Only minor complications were identified. Conclusion The Island TRAM flap includes 10 perforators to get the vigorous blood flow. The periumbilical to upper medial perforators become more dominant in the perfusion of the flap after deep inferior epigastric artery division. Well preserved perforators will guarantee the satisfactory breast reconstruction with the least complication.

Fractal dimension analysis as an easy computational approach to improve breast cancer histopathological diagnosis

  • Lucas Glaucio da Silva;Waleska Rayanne Sizinia da Silva Monteiro;Tiago Medeiros de Aguiar Moreira;Maria Aparecida Esteves Rabelo;Emílio Augusto Campos Pereira de Assis;Gustavo Torres de Souza
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.6.1-6.9
    • /
    • 2021
  • Histopathology is a well-established standard diagnosis employed for the majority of malignancies, including breast cancer. Nevertheless, despite training and standardization, it is considered operator-dependent and errors are still a concern. Fractal dimension analysis is a computational image processing technique that allows assessing the degree of complexity in patterns. We aimed here at providing a robust and easily attainable method for introducing computer-assisted techniques to histopathology laboratories. Slides from two databases were used: A) Breast Cancer Histopathological; and B) Grand Challenge on Breast Cancer Histology. Set A contained 2480 images from 24 patients with benign alterations, and 5429 images from 58 patients with breast cancer. Set B comprised 100 images of each type: normal tissue, benign alterations, in situ carcinoma, and invasive carcinoma. All images were analyzed with the FracLac algorithm in the ImageJ computational environment to yield the box count fractal dimension (Db) results. Images on set A on 40x magnification were statistically different (p = 0.0003), whereas images on 400x did not present differences in their means. On set B, the mean Db values presented promising statistical differences when comparing. Normal and/or benign images to in situ and/or invasive carcinoma (all p < 0.0001). Interestingly, there was no difference when comparing normal tissue to benign alterations. These data corroborate with previous work in which fractal analysis allowed differentiating malignancies. Computer-aided diagnosis algorithms may beneficiate from using Db data; specific Db cut-off values may yield ~ 99% specificity in diagnosing breast cancer. Furthermore, the fact that it allows assessing tissue complexity, this tool may be used to understand the progression of the histological alterations in cancer.

Can silver diamine fluoride or silver nanoparticle-based anticaries agents to affect enamel bond strength?

  • Jaqueline Costa Favaro ;Yana Cosendey Toledo de Mello Peixoto ;Omar Geha ;Flaviana Alves Dias ;Ricardo Danil Guiraldo ;Murilo Baena Lopes ;Sandrine Bittencourt Berger
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.1
    • /
    • pp.7.1-7.8
    • /
    • 2021
  • Objectives: The aim of the current study is to investigate the effect of different anticaries agents, such as experimental agents based on silver nanoparticles (SNPs) and silver diamine fluoride (SDF), on the micro-shear bond strength (μ-SBS) of composite resin applied to intact enamel (IE) or demineralized enamel (DE). Materials and Methods: Sixty dental enamel fragments were collected from human third molars and categorized into 6 groups (n = 10): positive control (IE), negative control (DE), IE + SDF, DE + SDF, IE + SNP and DE + SNP. Samples from DE, DE + SDF and DE + SNP groups were subjected to pH cycling; superficial microhardness test was performed to confirm demineralization. Resin composite build-ups were applied to the samples (0.75-mm diameter and 1-mm height) after the treatments (except for IE and DE groups); μ-SBS was also evaluated. Samples were analyzed under a stereomicroscope at 40× magnification to identify failure patterns. Data were subjected to one-way analysis of variance, followed by Tukey's and Dunnett's tests (p < 0.05). Results: There was no significant difference among the IE, IE + SNP, DE + SDF, and DE + SNP groups. The IE + SDF and DE groups recorded the highest and the lowest μ-SBS values, respectively. Adhesive-type failures were the most frequent for all treatments. Conclusions: Anticaries agents did not have a negative effect on the μ-SBS of composite resin when it was used on IE or DE.