• Title/Summary/Keyword: magnetron anode

Search Result 62, Processing Time 0.029 seconds

Effects of Ru Co-Sputtering on the Properties of Porous Ni Thin Films

  • Kim, Woo-Sik;Choi, Sun-Hee;Lee, Hae-Weon;Kim, Joo-Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.746-750
    • /
    • 2006
  • NiO films and Ru co-sputtered NiO films were deposited by reactive magnetron sputtering for micro-solid oxide fuel cell anode applications. The deposited films were reduced to form porous films. The reduction kinetics of the Ru doped NiO film was more sluggish than that of the NiO film, and the resulting microstructure of the former exhibited finer pore networks. The possibility of using the films for the anodes of single chamber micro-SOFCs was investigated using an air/fuel mixed environment. It was found that the abrupt increase in the resistance is suppressed in the Ru co-sputtered film, as compared to undoped film.

Linear Ion Beam Applications for Roll-to-Roll Metal Thin Film Coatings on PET Substrates

  • Lee, Seunghun;Kim, Do-Geun
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.162-166
    • /
    • 2015
  • Linear ion beams have been introduced for the ion beam treatments of flexible substrates in roll-to-roll web coating systems. Anode layer linear ion sources (300 mm width) were used to make the linear ion beams. Oxygen ion beams having an ion energy from 200 eV to 800 eV used for the adhesion improvement of Cu thin films on PET substrates. The Cu thin films deposited by a conventional magnetron sputtering on the oxygen ion beam treated PET substrates showed Class 5 adhesion defined by ASTM D3359-97 (tape test). Argon ion beams with 1~3 keV used for the ion beam sputtering deposition process, which aims to control the initial layer before the magnetron sputtering deposition. When the discharge power of the linear ion source is 1.2 kW, static deposition rate of Cu and Ni were 7.4 and $3.5{\AA}/sec$, respectively.

A Study on the Power Control Characteristics of a Power Supply for Electrodeless Lamp (무전극 램프(Electrodeless Lamp) 구동용 전원장치의 전력제어 특성에 관한 연구)

  • Lee, Sung-Geun;Jeon, Su-Kyun;Jang, Min-Kyu;Kim, Dong-Sok;Kim, Yoon-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.65-67
    • /
    • 2003
  • This paper describes a design of power supply for electrodeless lamp system to be easy to control electric power widely keeping the high power factor. Proposed system is composed of power factor correction(PFC) circuit, half bridge(HB) inverter, high voltage transformer, full wave rectifier to supply dc number kV's magnetron(MGT) anode voltage in the second of high voltage transformer and magnetron. It was confirmed that the proposed circuits can correct the 99.8[%] power factor and control input power of the magnetron up to 33.3[%] linearly by adjusting of pulse frequency of the inverter through the experiment.

  • PDF

Fabrication and Characterization of Sn1-xSixO2 Anode for Lithium Secondary Battery by R.F. Magnetron Sputtering Method (R.F. Magnetron Sputtering을 이용한 리튬이차전지 부극용 Sn1-xSixO2의 제조 및 특성)

  • Lee, Sang-Heon;Park, Keun-Tae;Son, Young-Guk
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.394-400
    • /
    • 2002
  • Tin oxide thin films doped with silicon as anodes for lithium secondary battery were fabricated by R. F. magnetron sputtering technique. The electrochemical results for lithium secondary battery anodes showed that addition of silicon decreases the oxidic state of tin, and, hence, reduced the irreversible capacity during the first discharge/charge cycle. The (110),(101),(211) planes were grown with increasing substrate temperatures. The reversible capacity of thin films fabricated in conditions of $300^{\circ}C$ substrate temperature and 7:3 $Ar:O_2$ ratio was 700 mAh/g.

Effect of the oxygen flow ratio on the structural and electrical properties of indium zinc tin oxide (IZTO) films prepared by pulsed DC magnetron sputtering

  • Son, Dong-Jin;Nam, Eun-Kyoung;Jung, Dong-Geun;Ko, Yoon-Duk;Choi, Byung-Hyun;Kim, Young-Sung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.168-168
    • /
    • 2010
  • Transparent conduction oxides (TCOs) films is extensively reported for optoelectronic devices application such as touch panels, solar cells, liquid crystal displays (LCDs), and organic light emitting diodes(OLEDs). Among the many TCO film, indium tin oxide(ITO) is in great demand due to the growth of flat panel display industry. However, indium is not only high cost but also its deposits dwindling. Therefore, many studies are being done on the transparent conductive oxides(TCOs). We fabricated a target of IZTO(In2O3:ZnO:SnO2=70:15:15 wt.%) reduced indium. Then, IZTO thin films were deposited on glass substrates by pulsed DC magnetron sputtering with various oxygen flow ratio. The substrate temperature was fixed at the room temperature. We investigated the electrical, optical, structural properties of IZTO thin films. The electrical properties of IZTO thin films were dependent on the oxygen partial pressure. As a result, the most excellent properties of IZTO thin films were obtained at the 3% of oxygen flow rate with the low resistivity of $7.236{\times}10^{-4}{\Omega}cm$. And also the optical properties of IZTO thin films were shown the good transmittance over 80%. These IZTO thin films were used to fabricated organic light emitting diodes(OLEDs) as anode and the device performances studied. The OLED with an IZTO anode deposited at optimized deposition condition showed good brightness properties. Therefore, IZTO has utility value of TCO electrode although it reduced indium and we expect it is possible for the IZTO to apply to flexible display due to the low processing temperature.

  • PDF

Electrical, Optical and Structural Properties of ZrO2 and In2O3 Co-sputtered Electrdoes for Organic Photovoltaics (OPVs)

  • Cho, Da-Young;Shin, Yong-Hee;Chung, Kwun-Bum;Na, Seok-In;Kim, Han-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.473.1-473.1
    • /
    • 2014
  • We report on the characteristics of Zr-doped $In_2O_3$ (IZrO) films prepared by DC-RF magnetron cosputtering of $In_2O_3$ and $ZrO_2$ targets for use as a transparent electrode for high efficient organic solar cells (OSCs). The effect of $ZrO_2$ doping power on electrical, optical, structural, and surface morphology of the IZrO film was investigated in detail. At optimized $ZrO_2$ RF power of 50 W, the IZrO film exhibited a low sheet resistance of 20.71 Ohm/square, and a high optical transmittance of 83.9 %. Furthermore, the OSC with the IZrO anode showed a good cell-performance: fill factor of 61.71 %, short circuit current (Jsc) of $8.484mA/cm^2$, open circuit voltage (Voc) of 0.593 V, and power conversion efficiency (PCE) of 3.106 %. In particular, the overall OSC characteristics of the cell with the IZrO anode were comparable to those of the OSC with the conventional Sn-doped $In_2O_3$ (FF of 65.03 %, Jsc of $8.833mA/cm^2$, Voc of 0.608 V, PCE of 3.495 %), demonstrating that the IZrO anode is a promising alternative to ITO anode in OSCs.

  • PDF

A Study on the Improvement on the Target Structure in a Magnetron Sputtering Apparatus (마그네트론 스퍼터링 장치의 타겟구조 개선에 관한 연구)

  • Bae, Chang-Hwan;Lee, Ju-Hee;Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.1
    • /
    • pp.23-28
    • /
    • 2010
  • The cylindrical magnetron sputtering has not been widely used, although this system is useful for only certain types of applications such as fiber coatings. This paper presents electrode configurations which improved the complicacy of the target assembly by using the positive voltage power supply. It is a modified type which has a target constructed with a large cylindrical part, a conical part and a small cylindrical part. When positive voltage was applied to an anode, a stable glow discharge was established and a high deposition rate was obtained. The substrate bias current was monitored to estimate the effect of ion bombardment. As a result, it was found that the substrate current was large. With cylindrical and conical cathode magnetron sputter deposition on the surface of the substrate to prevent re-sputtering, ion impact because it can increase the effectiveness with excellent ductility and adhesion of Ti film deposition can be obtained. We board at the front end of the ground resistance of $5\;k{\Omega}$ attached to the substrate potential can be controlled easily, and Ti film deposition with excellent adhesion can be obtained. Microstructure and morphology of Ti films deposited on pure Cu wires were investigated by scanning electron microscopy in relation to preparation conditions. High level ion bombardment was found to be effective in obtaining a good adhesion for Cu wire coatings.

Transparent Anodic Properties of In-doped ZnO thin Films for Organic Light Emitting Devices (In 도핑된 ZnO 박막의 투명 전극과 유기 발광 다이오드 특성)

  • Park, Young-Ran;Kim, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.6 s.301
    • /
    • pp.303-307
    • /
    • 2007
  • Transparent In-doped zinc oxide (IZO) thin films are deposited with variation of pulsed DC power at Ar atmosphere on coming 7059 glass substrate by pulsed DC magnetron sputtering. A c-axis oriented IZO thin films were grown in perpendicular to the substrate. The optical transmittance spectra showed high transmittance of over 80% in the UV-visible region and exhibited the absorption edge of about 350 nm. Also, the IZO films exhibited the resistivity of ${\sim}10^{-3}{\Omega}\;cm$ and the mobility of ${\sim}6cm/V\;s$. Organic Light-emitting diodes (OLEDs) with IZO/N,N'-diphenyl-N, N'-bis(3-methylphenl)-1, 1'-biphenyl-4,4'-diamine (TPD)/tris (8-hydroxyquinoline) aluminum ($Alq_3$)/LiF/Al configuration were fabricated. LiF layer inserted is used as an interfacial layer to increase the electron injection. Under a current density of $100\;mA/cm^2$, the OLEDs show an excellent efficiency (9.4 V turn-on voltage) and a good brightness ($12000\;cd/m^2$) of the emission light from the devices. These results indicate that IZO films hold promise for anode electrodes in the OLEDs application.

Effect of Working Pressure on Anode Characteristics of Tin Oxide Thin Films (공정압력에 따른 주석 산화물 박막의 음극 특성)

  • Son, Hyeon-Cheol;Mun, Hui-Su;Seong, Sang-Hyeon;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.9 no.1
    • /
    • pp.14-17
    • /
    • 1999
  • Tin oxide films as an anode layer for microbatteries were deposited by using rf magnetron sputtering. Characterization of the films was carried out in terms of working pressure in the range of 5~30 mtorr. Rf power and substrate temperature during deposition were fixed at 2.5W/$\textrm{cm}^2$ and A.T., respectively. The crystal orientation of $SnO_2$films was changed from (110) to (101) or (211) with the increasing working pressure. Refractive index and film density of the films also decreased with the increasing working pressure. The $SnO_2$ thin film formed under optimum conditions was found to have a reversible capacity of 446.9$\mu$Ah/$\textrm{cm}^2$-$\mu\textrm{m}$ and good reversibility when the working pressure was fixed at 10mtorr. As the working pressure decreased, film density increased. It was thought that the capacity of $SnO_2$films increased due to the increase in the amount of active materials which can react with Li electrochemically. Furthermore, cycle characteristics of the anode material was also influenced by film stress.

  • PDF

Sputtered ZTO as a blocking layer at conducting glass and $TiO_2$ Interfaces in Dye-Sensitized Solar Cells (GZO/ZTO 투명전극을 이용한 DSSC의 광전 변환 효율 특성)

  • Park, Jaeho;Lee, Kyungju;Song, Sangwoo;Jo, Seulki;Moon, Byungmoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.53.2-53.2
    • /
    • 2011
  • Dye-sensitized solar cells(DSSCs) have been recognized as an alternative to the conventional p-n junction solar cells because of their simple fabrication process, low production cost, and transparency. A typical DSSC consists of a transparent conductive oxide (TCO) electrode, a dye-sensitized oxide semiconductor nanoparticle layer, liquid redox electrolyte, and a Pt-counter electrode. In dye-sensitized solar cells, charge recombination processes at interfaces between coducting glass, $TiO_2$, dye, and electrolyte play an important role in limiting the photon-to-electron conversion efficiency. A layer of ZTO thin film less than ~200nm in thickness, as a blocking layer, was deposited by DC magnetron sputtering method directly onto the anode electrode to be isolated from the electrolyte in dye-sensitized solar cells(DSCs). This is to prevent the electrons from back-transferring from the electrode to the electrolyte ($I^-/I_3^-$). The presented DSCs were fabricated with working electrode of Ga-doped ZnO glass coated with blocking ZTO layer, dye-attached nanoporous $TiO_2$ layer, gel electrolyte and counter electrode of Pt-deposited GZO glass. The effects of blocking layer were studied with respect to impedance and conversion efficiency of the cells.

  • PDF