• Title/Summary/Keyword: magnetotail

Search Result 16, Processing Time 0.023 seconds

Recurrent dipolarizations of near-Earth magnetotail during high-speed solar wind streamers

  • Lee, En-Sang;Parks, George K.;Wilber, Mark;Lin, Naiguo;Lee, Dae-Young;Kim, Khan-Hyuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.94.1-94.1
    • /
    • 2011
  • Recurrent substorms occur when high-speed solar wind streamers pass by Earth's magnetosphere. Most of the previous researches have been done using the observations obtained at the geosynchronous orbit focusing on the relationship between the solar wind disturbances and the occurrence of substorms. However, it is important to investigate the dynamics of the magnetotail because the magnetotail is the place where substorms develop. In this study we investigated the observations of recurrent dipolarizations in the near-Earth magnetotail that occurred during high-speed solar wind streamers. The dipolarizations and subsequent stretchings have occurred for more than three days with the average period of ~2 - 3 hours. The average period of ~2 - 3 hours is consistent with the average occurrence period of recurrent substorms. Also, the observed signatures on the geosynchronous orbit and the ground show recurrent substorms have occurred during the event. These suggest that the recurrent dipolarizations in the near-Earth magnetotail should be closely related to the recurrent substorms. On the other hand, there was no clear flow activities directly associated with the dipolarizations, except for some intermittent bursty flow activities. We will discuss the detailed characteristics of the dipolarizations and the relationship with recurrent substorms.

  • PDF

Magnetotail responses to sudden and quasi-periodic solar wind variations

  • Kim, Khan-Hyuk;Lee, Dong-Hun
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.33-33
    • /
    • 2003
  • A clear bipolar (negative/positive) signature in the Ey component was observed by the Cluster satellite in the magnetotail during a sudden impulse (si) on October 11, 2001 (day 284). During the interval of the negative perturbation in Ey, the magnetic field strength in Bx, a dominant magnetic field component, was nearly constant. However, the amplitude of Bx was strongly enhanced during the positive Ey perturbation. We suggest that the observed E and B field variations are due to outward/inward plasma motions, associated with expanded and then compressed magnetopause variations. We also observed quasi-periodic geomagnetic perturbations in the Pc5 band (∼1-6 mHz) at the low-latitude ground station Kakioka (L = 1.25) following the si event. They were highly correlated with the magnetic field perturbations at Cluster in the magnetotail (Xgse = ∼12 Re). We show that the source of these perturbations is the quasi-periodic solar wind pressure variations moving tailward.

  • PDF

Responses of the Plasmasphere to Impulsive Disturbance in the Magnetotail

  • Lee, Dong-Hun
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.25 no.1
    • /
    • pp.47-56
    • /
    • 1997
  • We present a theoretical study on how the plasmasphere responses to the sudden impulses in the magnetosphere. A mechanism on how Pi 2 pulsations are excited in the magnetosphere is also proposed. When impulsive disturbances associated with the substorm onset are assumed in the magnetotail, their propagation toward the sunward direction is investigated with a wave equation. The propagation speed undergoes serious variations owing to the existence of the plasmasphere, which results in various reflection and tunneling of traveling disturbances at the plasmapause. In order to examine the effect of the plasmapause on initial impulsive disturbances, we analytically solve the wave equation based on the model of reasonable Alfven speed profile. The exact solution shows that virtual resonant states exist inside the plasmaspheric cavity. We obtain the result that these unique modes strongly persist for arbitrary incoming impulses from the source in the magnetotail, which quantitatively corresponds to the signature of PI 2 pulsations.

  • PDF

Numerical Simulation of Ion Beam Acoustic Instability by Single Ion Beams

  • Kim, S.Y.
    • Journal of Astronomy and Space Sciences
    • /
    • v.3 no.2
    • /
    • pp.117-122
    • /
    • 1986
  • The broadband electrostatic noise has been observed in the boundary layer region of the earth's magnetosphers. These electrostatic waves believed to be generated by drifting ion beams in the matnetotail. We have shown the numerical simulation result of ion beam acoustic instability in the magnetotail. This instability heats both background and beam ion in the boundary layer of neutral sheet observed by satellite.

  • PDF

Observation of Transition Boundary between Cold, Dense and Hot, Tenuous Plasmas in the Near-Earth Magnetotail

  • Kim, Hee-Eun;Lee, Ensang
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.95-104
    • /
    • 2020
  • Properties of plasmas that constitute the plasma sheet in the near-Earth magnetotail vary according to the solar wind conditions and location in the tail. In this case study, we present multi-spacecraft observations by Cluster that show a transition of plasma sheet from cold, dense to hot, tenuous state. The transition was associated with the passage of a spatial boundary that separates the plasma sheet into two regions with cold, dense and hot, tenuous plasmas. Ion phase space distributions show that the cold, dense ions have a Kappa distribution while the hot, tenuous ions have a Maxwellian distribution, implying that they have different origins or are produced by different thermalization processes. The transition boundary separated the plasma sheet in the dawn-dusk direction, and slowly moved toward the dawn flank. The hot, tenuous plasmas filled the central region while the cold, dense plasmas filled the outer region. The hot, tenuous plasmas were moving toward the Earth, pushing the cold, dense plasmas toward the flank. Different types of dynamical processes can be generated in each region, which can affect the development of geomagnetic activities.

Earthward Flow Bursts in the Magnetotail Driven by Solar Wind Pressure Impulse

  • Kim, Khan-Hyuk;Kwak, Young-Sil;Lee, Jae-Jin;Hwang, Jung-A
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.375-382
    • /
    • 2008
  • On August 31, 2001, ${\sim}$ 1705 - 1718 UT, Cluster was located near the midnight magnetotail, GSE (x, y, z) ${\sim}$ (-19, - 2,2) RE, and observed fast earthward flow bursts in the vicinity of the neutral sheet. They occurred while the tail magnetic field suddenly increased. Using simultaneous measurements in the solar wind, at geosynchronous orbit, and on the ground, it is confirmed that tail magnetic field enhancement is due to an increased solar wind pressure. In the neutral sheet region, strongly enhanced earthward flow bursts perpendicular to the local magnetic field $(V_{{\perp}x})$ were observed. Auroral brightenings localized in the pre-midnight sector (${\sim}$ 2200 - 2400 MLT) occurred during the interval of the $V_{{\perp}x}$ enhancements. The $V_{{\perp}x}$ bursts started ${\sim}$ 2 minutes before the onset of auroral brightenings. Our observations suggest that the earthward flow bursts are associated with tail reconnection directly driven by a solar wind pressure impulse and that $V_{{\perp}x}$ caused localized auroral brightenings.

Three Dimensional Computer Modeling of Magnetospheric Substorm

  • Min, Kyoung-W.
    • Journal of Astronomy and Space Sciences
    • /
    • v.6 no.1
    • /
    • pp.1-15
    • /
    • 1989
  • Magnetospheic substorm in the magnetotail region is studied numerically by means of a three dimensional MHD code. The analytic solution for the quiet magnetotail is employed as an initial configuration. The localized solar wind is modeled to enter the simulation domain through the boundaries located in the magnetotail lobe region. As a result of the interaction between the solar wind and the magnetosphere, the magnetic field lines are stretched, and the plasma sheet becomes thinner and thinner. When the current driven resistivity is generated, magnetic reconnection is triggered by this resistivity. The resulting plasma jetting is found to be super-magnetosonic. Although the plasmoid formation and its tailward motion is not quite clear as in the two dimensional simulation, which is mainly because of the numerical model chosen for the present simulation, the rarification of the plasmas near the x-point is observed. Field aligned currents are observed in the late expansive stage of the magnetospheric substorm. These field aligned currents flow from the tail toward the ionosphere on the dawn side from the ionosphere to ward the tail on the dusk side, namely in the same sense of the region 1 current. As the field aligned currents develop, it is found that the cross tail current in the earth side midnight section of the magnetic x-point is reduced.

  • PDF

THEORY AND SIMULATION OF BROADBAND ELECTROSTATIC NOISE IN THE MAGNETOTAIL

  • Kim, S.Y.
    • Journal of Astronomy and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.250-272
    • /
    • 1994
  • Various plasma instabilities driven by the ion beams have been proposed in order to explain the broadband electrostatic noise (BEN) in the earth's geomagnetic tail. Ion acoustic, ion-ion two stream, and electron acoustic instabilities have been proposed. Here we consider a theoretical investigation of the generation of BEN by cold streaming ion beams in the earth's magnetotail. Linear theory analysis and particle simulation studies for the plasma sheet, which consists of warm electrons and ions as well as cold streaming ion beams, have been done. Both beam-ion acoustic and ion-ion two stream instabilities easily occur when the beam and warm electron temperature ratio, $T_b/T_e$ is small enough. The numerical simulation results confirm the existence of broadband electrostatic noise whose frequency is ranged from $\omega$=0 to $\omega$$\omega_{pe}$.

  • PDF