Browse > Article
http://dx.doi.org/10.5140/JASS.2020.37.2.95

Observation of Transition Boundary between Cold, Dense and Hot, Tenuous Plasmas in the Near-Earth Magnetotail  

Kim, Hee-Eun (School of Space Research, Kyung Hee University)
Lee, Ensang (School of Space Research, Kyung Hee University)
Publication Information
Journal of Astronomy and Space Sciences / v.37, no.2, 2020 , pp. 95-104 More about this Journal
Abstract
Properties of plasmas that constitute the plasma sheet in the near-Earth magnetotail vary according to the solar wind conditions and location in the tail. In this case study, we present multi-spacecraft observations by Cluster that show a transition of plasma sheet from cold, dense to hot, tenuous state. The transition was associated with the passage of a spatial boundary that separates the plasma sheet into two regions with cold, dense and hot, tenuous plasmas. Ion phase space distributions show that the cold, dense ions have a Kappa distribution while the hot, tenuous ions have a Maxwellian distribution, implying that they have different origins or are produced by different thermalization processes. The transition boundary separated the plasma sheet in the dawn-dusk direction, and slowly moved toward the dawn flank. The hot, tenuous plasmas filled the central region while the cold, dense plasmas filled the outer region. The hot, tenuous plasmas were moving toward the Earth, pushing the cold, dense plasmas toward the flank. Different types of dynamical processes can be generated in each region, which can affect the development of geomagnetic activities.
Keywords
transition boundary; magnetotail; plasma sheet; Cluster observation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Reme H, Aoustin C, Bosqued JM, Dandouras I, Lavraud B, et al., First multispacecraft ion measurements in and near the Earth's magnetosphere with the identical Cluster ion spectrometry (CIS) experiment, Ann. Geophys. 19, 1303-1354 (2001). https://doi.org/10.5194/angeo-19-1303-2001   DOI
2 Russell CT, Mellott MM, Smith EJ, King JH, Multiple spacecraft observations of interplanetary shocks: four spacecraft determination of shock normals, J. Geophys. Res. 88, 4739-4748 (1983). https://doi.org/10.1029/JA088iA06p04739   DOI
3 Schwartz SJ, Shock and discontinuity normals, Mach numbers, and related parameters, in Analysis Methods for Multi-Spacecraft Data, ISSI Scientific Report SR-001 (electronic edition 1.1), eds. Paschmann G, Daly PW (ESA Publications Division, Noordwijk, 1998) 249-270.
4 Sergeev VA, Sauvaud JA, Popescu D, Kovrazhkin RA, Liou K, et al., Multiple-spacecraft observation of a narrow transient plasma jet in the Earth's plasma sheet, Geophys. Res. Lett. 27, 851-854 (2000). https://doi.org/10.1029/1999GL010729   DOI
5 Shin Y, Lee E, Lee JJ, Analysis of field-aligned currents in the high-altitude nightside auroral region: Cluster observation, J. Astron. Space Sci. 36, 1-9 (2019). https://doi.org/10.5140/JASS.2019.36.1.1   DOI
6 Terasawa T, Fujimoto M, Mukai T, Shinohara I, Saito Y, et al., Solar wind control of density and temperature in the near-Earth plasma sheet: WIND/GEOTAIL collaboration, Geophys. Res. Lett. 24, 935-938 (1997). https://doi.org/10.1029/96GL04018   DOI
7 Parks GK, Lee E, Teste A, Wilber M, Lin N, et al., Transport of transient solar wind particles in Earth's cusps, Phys. Plasmas 15, 080702 (2008). https://doi.org/10.1063/1.2965825   DOI
8 Wang CP, Lyons LR, Nagai T, Weygand JM, McEntire RW, Sources, transport, and distributions of plasma sheet ions and electrons and dependences on interplanetary parameters under northward interplanetary magnetic field, J. Geophys. Res. 112, A10224 (2007). https://doi.org/10.1029/2007JA012522
9 Wang CP, Lyons LR, Weygand JM, Nagai T, McEntire RW, Equatorial distributions of the plasma sheet ions, their electric and magnetic drifts, and magnetic fields under different interplanetary magnetic field Bz conditions, J. Geophys. Res. 111, A04215 (2006). https://doi.org/10.1029/2005JA011545   DOI
10 Wing S, Johnson JR, Fujimoto M, Timescale for the formation of the cold-dense plasma sheet: a case study, Geophys. Res. Lett. 33, L23106 (2006). https://doi.org/10.1029/2006GL027110   DOI
11 Fujimoto M, Terasawa T, Mukai T, The cold-dense plasma sheet: a Geotail perspective, Space Sci. Rev. 80, 325-339 (1997). https://doi.org/10.1023/A:1004934306623   DOI
12 Baker DN, Pulkkinen TI, Angelopoulos V, Baumjohann W, McPherron RL, Neutral line model of substorms: past results and present view, J. Geophys. Res. 101, 12975-13010 (1996). https://doi.org/10.1029/95JA03753   DOI
13 Balogh A, Carr CM, Acuna MH, Dunlop MW, Beek TJ, et al., The Cluster magnetic field investigation: overview of in-flight performance and initial results, Ann. Geophys. 19, 1207-1217 (2001). https://doi.org/10.5194/angeo-19-1207-2001   DOI
14 Baumjohann W, The near-Earth plasma sheet: an AMPTE/IRM perspective, Space Sci. Rev. 64, 141-163 (1993). https://doi.org/10.1007/BF00819660   DOI
15 Baumjohann W, Paschmann G, Cattell CA, Average plasma properties in the central plasma sheet, J. Geophys. Res. 94, 6597-6606 (1989). https://doi.org/10.1029/JA094iA06p06597   DOI
16 Borovsky JE, Thomsen MF, Elphic RC, The driving of the plasma sheet by the solar wind, J. Geophys. Res. 103, 17617-17639 (1998). https://doi.org/10.1029/97JA02986   DOI
17 Fairfield DH, Otto A, Mukai T, Kokubun S, Lepping RP, et al. Geotail observations of the Kelvin-Helmholtz instability at the equatorial magnetotail boundary for parallel northward fields, J. Geophys. Res. 105, 21159-21173 (2000). https://doi.org/10.1029/1999JA000316   DOI
18 Fritz TA, Chen J, The cusp as a source of magnetospheric particles, Radiat. Meas. 30, 599-608 (1999). https://doi.org/10.1016/S1350-4487(99)00239-5   DOI
19 Fujimoto M, Terasawa T, Mukai T, Saito Y, Yamamoto T, et al., Plasma entry from the flanks of the near-Earth magnetotail: Geotail observations, J. Geophys. Res. 103, 4391-4408 (1998). https://doi.org/10.1029/97JA03340   DOI
20 Hasegawa H, Fujimoto M, Saito Y, Mukai T, Dense and stagnant ions in the low-latitude boundary region under northward interplanetary magnetic field, Geophys. Res. Lett. 31, L06802 (2004). https://doi.org/10.1029/2003GL019120
21 Huang CY, Frank LA, A statistical survey of the central plasma sheet, J. Geophys. Res. 99, 83-95 (1994). https://doi.org/10.1029/93JA01894   DOI
22 Johnstone AD, Alsop C, Burge S, Carter PJ, Coates AJ, et al., PEACE: a plasma electron and current experiment, Space Sci. Rev. 79, 351-398 (1997). https://doi.org/10.1007/978-94-011-5666-0_13   DOI
23 Oieroset M, Phan TD, Fujimoto M, Chan L, Lin RP, et al., Spatial and temporal variations of the cold dense plasma sheet: evidence for a low-latitude boundary layer source? in geophysical monograph series, vol. 133, Earth's Low-Latitude Boundary Layer, eds. Newell PT, Onsager TG (AGU, Washington, DC, 2003), 253-264.
24 Lennartsson W, A scenario for solar wind penetration of Earth's magnetic tail based on ion composition data from the ISEE 1 spacecraft, J. Geophys. Res. 97, 19221-19238 (1992). https://doi.org/10.1029/92JA01604   DOI
25 Li W, Raeder J, Dorelli J, Oieroset M, Phan TD, Plasma sheet formation during long period of northward IMF, Geophys. Res. Lett. 32, L12S08 (2005). https://doi.org/10.1029/2004GL021524
26 Lui ATY, Current disruption in the Earth's magnetosphere: observations and models, J. Geophys. Res. 101, 13067-13088 (1996). https://doi.org/10.1029/96JA00079   DOI
27 Miyashita Y, Machida S, Mukai T, Saito Y, Tsuruda K, et al., A statistical study of variations in the near and middistant magnetotail associated with substorm onsets: GEOTAIL observations, J. Geophys. Res. 105, 15913-15930 (2000). https://doi.org/10.1029/1999JA000392   DOI
28 Nagata D, Machida S, Ohtani S, Saito Y, Mukai T, Solar wind control of plasma number density in the near-Earth plasma sheet, J. Geophys. Res. 112, A09204 (2007). https://doi.org/10.1029/2007JA012284
29 Oieroset M, Raeder J, Phan TD, Wing S, McFadden JP, et al., Global cooling and densification of the plasma sheet during an extended period of purely northward IMF on October 22-24, 2003, Geophys. Res. Lett. 32, L12S07 (2005). https://doi.org/10.1029/2004GL021523
30 Parks GK, Fitzenreiter R, Ogilvie KW, Huang C, Anderson KA, et al., Low-energy particle layer outside of the plasma sheet boundary, J. Geophys. Res. 97, 2943-2954 (1992). https://doi.org/10.1029/91JA02391   DOI
31 Phan TD, Paschmann G, Raj A, Angelopoulos V, Larson D, et al., Wind observations of the halo/cold plasma sheet, in Substorms-4, eds. Kokubun S, Kamide Y (Kluwer Academic Publishers, Dordrecht, Nederland, 1998), 219-222.