• Title/Summary/Keyword: magnetostrictive

Search Result 257, Processing Time 0.026 seconds

Single Layer Array of Transmitting and Receiving Spiral Coils for Magnetostrictive Type Long-Range Ultrasonic Testing (자왜방식 원거리 초음파검사를 위한 단층 송수신 나선형 코일 배열)

  • Choi, Myoung Seon;Kim, Yoo Jin;Lee, Hyo Moon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.219-225
    • /
    • 2013
  • Separate and layered transmitting and receiving spiral coil arrays had been used for the optimized individual applications of magnetostrictive type long-range ultrasonic testing. In this study, it was demonstrated that when taking advantages of the spiral coils with the leg width reduced to be half of the previous one and of the empty spaces due to the decrease of leg width, the transmitting and receiving coil array can be arranged to form a single layer structure allowing more easy use and fabrication. Because of the number of turns of the receiving coils that is proportional to their leg width, the sensitivity of the single layer coil array was about half that of the corresponding double layer coil array while it allowed the receiving amplifier to get faster recovery from a saturation due to the main bang echo. It was also found that the two types of coil arrays have almost the same performances in the view points of signal-to-noise ratio and directivity control.

Design and Construction of the Acoustic Horn for Magnetostrictive Ultrasonic Transducer (자왜형 초음파 트랜스듀서용 도파봉의 설계 및 제작)

  • 강국진;노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.57-65
    • /
    • 2001
  • In this paper, we designed the acoustic horn for magnetostrictive ultrasonic transducers in a theoretical manner, and validity of the analysis was verified through comparison with the results of finite element analysis. Results of the two analysis methods showed good agreement with each other. The theoretical method can fairly quickly determine the horn length that satisfies given frequency specification, but also has the drawback that it is applicable only to the frequency range over the cut-off frequency. According to the results, the catenoidal horn can provide larger amplification than the exponential horn. It was also found that it is more desirable for the region having the catenoidal curvature to be as short as possible to achieve larger amplification of the transducer deformation. Based on the analysis results, a magneto-strictive transducer sample was fabricated and its performance was evaluated experimentally. The transducer has the resonance frequency of 19.3 ㎑ as well as the maximum SPL of 199 dB, and shows the omni-directional radiation pattern.

  • PDF

Anisotropy Control of Highly Magnetostrictive Films by Bias Stress (바이어스 응력에 의한 고자왜 아몰퍼스 박막의 자기이방성 제어)

  • Shin, Kwang-Ho;Kim, Young-Hak;Park, Kyung-Il;Sa-Gong, Geon
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.5
    • /
    • pp.193-197
    • /
    • 2003
  • To materialize the magnetoelastic devices, such as a highly functional sensor and a signal processing device, using the Fe base amorphous film which has both excellent soft magnetic and magnetostrictive properties, in this study, a new method to control the magnetic anisotropy of a highly magnetostrictive film using bias stress has been proposed and tested. The film pattern, which was stressed by its substrate bending, was subjected to annealing for relieving its stress. Successively, the compressive stress occurred by flattening the substrate was formed in the pattern. With the introduction of the residual compressive stress, the magnetization of the film pattern was aligned in the transverse direction through magnetoelasic coupling. The magnetic domain structure and magnetization curve of the film pattern of which magnetic anisotropy was controlled by the proposed method were presented to verify the availability of the method.

Modeling and Experimental Verification on Static Landing Accuracy of Droplets from Magnetostrictive Inkjet Head (자기변형잉크젯헤드에서 토출된 액적의 정적 착지정확도 모델링 및 실험적 검증)

  • Yoo, Eun Ju;Park, Young Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.1
    • /
    • pp.77-84
    • /
    • 2013
  • Most research on the inkjet printing technology has focused on the development of inkjet head itself, and of process, not on the landing accuracy of the droplets to a target. Thus, this paper presents the modeling and experimental verification on the static landing accuracy and precision of the droplets from the magnetostrictive inkjet head. A simple model based on the angle deviation of a nozzle tip and on a distance to a substrate is considered, assuming that there is no ambient effect. The angle deviation of the nozzle tip is determined by using its digital image with the aid of a pixel calculation program, and the distance to the substrate is set to 1 mm. Three experiments have planned and preformed. The first experiment is to collect the initial data for the landing distribution of the droplets. The second experiment is to collect the repeatability data of the stage used. Then, these data are used to rederive the equation for the final landing position of the droplet. The final experiment is to verify the equation and to show the calibration results. The respective landing accuracy of the droplet after calibration on the x-axis and on y axis has improved from $338.51{\mu}m$ and $-133.63{\mu}m$ to $7.06{\mu}m$ and $13.11{\mu}m$. The respective percent improvement on the x-axis and on y axis reaches about 98 and about 90. The respective landing precision of the droplet after calibration on the x-axis and on y axis has improved from ${\pm}182.6{\mu}m$ and ${\pm}182.88{\mu}m$ to ${\pm}24.64{\mu}m$ and ${\pm}42.76{\mu}m$. The respective percent improvement on the x-axis and on y axis reaches about 87 and about 77.

Characteristics of Magnetoelectric Composite with Rosen Type Piezoelectric Transducer Structure (Rosen형 압전 변압기 구조를 적용한 자기-전기 복합체의 특성)

  • Park, Sung Hoon;Yoon, Woon-Ha;Patil, Deepak Rajaram;Ryu, Jungho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.480-486
    • /
    • 2021
  • Magnetoelectric (ME) composite is composed of a piezoelectric material and a magnetostrictive material. Among various ME structures, 2-2 type layered ME composites are anticipated to be used as high-sensitivity magnetic field sensors and energy harvesting devices especially operating at its resonance modes. Rosen type piezoelectric transducer using piezoelectric material is known to amplify a small electrical input voltage to a large electrical output voltage. The output voltage of these Rosen type piezoelectric transducers can be further enhanced by modifying them into ME composite structures. Herein, we fabricated Rosen type ME composites by sandwiching Rosen type PMN-PZT single crystal between two Ni layers and studied their ME coupling. However, the voltage step-up ratio at the resonance frequency was found to be smaller than the value calculated with αME value. The ATILA FEA (Finite Elements Analysis) simulation results showed that the position of the nodal point was changed with the presence of a magnetostrictive layer. Thus, while designing a Rosen type ME composite with high performance in a resonant driving situation, it is necessary to optimize the position of the nodal point by optimizing the thickness or length of the magnetostrictive layer.

Effects of B Addition and Heat Treatment on the Magnetic and Magnetostrictive Properties of Amorphous $SmEe_2$ thin Films (비정질 $SmFe_2 $합금의 자기적 및 자기변형 특성에 미치는 B 첨가와 열처리 영향)

  • Choi, K.G.;Jang, Ho;Han, S.H.;Kim, H.J.;Lim, S.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.5
    • /
    • pp.237-245
    • /
    • 2000
  • Effects of B addition and heat treatment on the magnetic and magnetostrictive properties of amorphous SmFe$_2$ thin films are investigated. A significant improvement in the magnetostrictive properties at low magnetic fields is observed with the addition of B. This improvement, however, is achieved at a heavy cost of intrinsic properties such as saturation magnetostriction. For example, at a magnetic field of 30 Oe, magnetostriction of a thin film with a B content of 9.9 at.% is increased from 190 to 333 ppm, but saturation magnetostriction is decreased by more than 50 %. This result is in accord with the deterioration (reduction) of saturation magnetization and the improvement (reduction) of coercive force at this B content. The magnetostrictive properties are also improved by annealing and optimum annealing temperature is found to be in the range 300-400 $^{\circ}C$. The main reason for the improvement is mainly considered to be due to the reduction of coercive force caused by stress relief, not due to the ultrafine SmFe$_2$ precipitates which were originally expected to form by annealing.

  • PDF