DOI QR코드

DOI QR Code

Characteristics of Magnetoelectric Composite with Rosen Type Piezoelectric Transducer Structure

Rosen형 압전 변압기 구조를 적용한 자기-전기 복합체의 특성

  • Park, Sung Hoon (School of Materials Engineering, Yeungnam University) ;
  • Yoon, Woon-Ha (Functional Ceramics Group, Korea Institute of Materials Science (KIMS)) ;
  • Patil, Deepak Rajaram (School of Materials Engineering, Yeungnam University) ;
  • Ryu, Jungho (School of Materials Engineering, Yeungnam University)
  • 박성훈 (영남대학교 신소재공학부) ;
  • 윤운하 (한국재료연구원 기능세라믹연구실) ;
  • ;
  • 류정호 (영남대학교 신소재공학부)
  • Received : 2021.08.23
  • Accepted : 2021.08.30
  • Published : 2021.11.01

Abstract

Magnetoelectric (ME) composite is composed of a piezoelectric material and a magnetostrictive material. Among various ME structures, 2-2 type layered ME composites are anticipated to be used as high-sensitivity magnetic field sensors and energy harvesting devices especially operating at its resonance modes. Rosen type piezoelectric transducer using piezoelectric material is known to amplify a small electrical input voltage to a large electrical output voltage. The output voltage of these Rosen type piezoelectric transducers can be further enhanced by modifying them into ME composite structures. Herein, we fabricated Rosen type ME composites by sandwiching Rosen type PMN-PZT single crystal between two Ni layers and studied their ME coupling. However, the voltage step-up ratio at the resonance frequency was found to be smaller than the value calculated with αME value. The ATILA FEA (Finite Elements Analysis) simulation results showed that the position of the nodal point was changed with the presence of a magnetostrictive layer. Thus, while designing a Rosen type ME composite with high performance in a resonant driving situation, it is necessary to optimize the position of the nodal point by optimizing the thickness or length of the magnetostrictive layer.

Keywords

Acknowledgement

본 연구는 국가과학기술연구회 창의성 융합사업(CAP-17-04-KRISS)의 지원을 받아 수행되었습니다.

References

  1. K. Ko, B. I. Noh, and S. C. Yang, J. Korean Inst. Electr. Electron. Mater. Eng., 34, 229 (2021). [DOI: https://doi.org/10.4313/JKEM.2021.34.4.229]
  2. J. H. Cho and W. Jo, J. Korean Inst. Electr. Electron. Mater. Eng., 34, 149 (2021). [DOI: https://doi.org/10.4313/JKEM.2021.34.3.149]
  3. S. Park, M. Peddigari, G. T. Hwang, W. H. Yoon, A. Kumar, and J. Ryu, Appl. Phys. Lett., 115, 102901 (2019). [DOI: https://doi.org/10.1063/1.5120092]
  4. J. Yang, Y. Wen, P. Li, X. Dai, and M. Li, J. Magn., 16, 150 (2011). [DOI: https://doi.org/10.4283/JMAG.2011.16.2.150]
  5. H. Palneedi, V. Annapureddy, S. Priya, and J. Ryu, Actuators, 5, 9 (2016). [DOI: https://doi.org/10.3390/act5010009]
  6. S. H. Kim, A. Thakre, D. R. Patil, S. H. Park, T. A. Listyawan, N. Park, G. T. Hwang, J. Jang, K. H. Kim, and J. Ryu, ACS Appl. Mater. Interfaces, 13, 19983 (2021). [DOI: https://doi.org/10.1021/acsami.1c00922]
  7. Y. Wang, F. Wang, S. W. Or, H.L.W. Chan, X. Zhao, and H. Luo, Appl. Phys. Lett., 93, 113503 (2008). [DOI: https://doi.org/10.1063/1.2976329]
  8. L. Chen and Y. Luo, J. Magn., 20, 347 (2015). [DOI: https://doi.org/10.4283/JMAG.2015.20.4.347]
  9. F. Wang, J. Wu, Y. Jia, H. Zhu, X. Zhao, and H. Luo, Rev. Sci. Instrum., 78, 073903 (2007). [DOI: https://doi.org/10.1063/1.2752747]
  10. M. Guo, K. H. Lam, D. M. Lin, S. Wang, K. W. Kwok, H.L.W. Chan, and X. Z. Zhao, J. Mater. Sci., 43, 709 (2008). [DOI: https://doi.org/10.1007/s10853-007-2199-0]
  11. Y. H. Hsu, C. K. Lee, and W. H. Hsiao, IEEE Trans. Ultrason. Eng., 52, 1829 (2005). [DOI: https://doi.org/10.1109/tuffc.2005.1561639]
  12. Y. Jia, H. Luo, X. Zhao, and F. Wang, Adv. Mater., 20, 4776 (2008). [DOI: https://doi.org/10.1002/adma.200800565]
  13. R. C. Kambale, W. H Yoon, D. S. Park, J. J. Choi, C. W. Ahn, J. W. Kim, B. D. Hahn, D. Y. Jeong, B. C. Lee, G. S. Chung, and J. Ryu, J. Appl. Phys., 113, 204108 (2013). [DOI: https://doi.org/10.1063/1.4804959]
  14. J. Hur, I. T. Seo, D. H. Kim, S. Nahm, J. Ryu, S. H. Han, C. Y. Kang, and S. J. Yoon, J. Am. Ceram. Soc., 97, 3157 (2014). [DOI: https://doi.org/10.1111/jace.13079]
  15. N. Cai, J. Zhai, C. W. Nan, Y. Lin, and Z. Shi, Phys. Rev. B, 68, 224103 (2003). [DOI: https://doi.org/10.1103/PhysRevB.68.224103]
  16. J. Ryu, S. Priya, K. Uchino, H. E Kim, and D. Viehland, J. Korean Ceram. Soc., 39, 813 (2002). [DOI: https://doi.org/10.4191/kcers.2002.39.9.813]
  17. G. T. Hwang, H. Palneedi, B. M. Jung, S. J. Kwon, M. Peddigari, Y. Min, J. W. Kim, C. W. Ahn, J. J. Choi, B. D. Hahn, J. H. Choi, W. H. Yoon, D. S. Park, S. B. Lee, Y. Choe, K. H. Kim, and J. Ryu, ACS Appl. Mater. Interfaces, 10, 32323 (2018). [DOI: https://doi.org/10.1021/acsami.8b09848]