• Title/Summary/Keyword: magnetostrictive

Search Result 259, Processing Time 0.029 seconds

Magnetization Processes in Partially Crystallized Co-Based Metallic Glass

  • Lachowicz, H.K.;Poplawsi, F.;Zuberek, R.;Kuzminski, M.;Slawska-Waniewska, A.;Dynowska, E.;Yu, S.C.
    • Journal of Magnetics
    • /
    • v.4 no.3
    • /
    • pp.84-87
    • /
    • 1999
  • It is shown that progressive crystallization of non-magnetostrictive Co-based metallic glass (VITROVAC 6030) leads to an increase of coercivity by more than three orders of magnitude. The mechani는 responsible for this phenomenon are interpreted showing that the main source for the giant increase of the coercivity is the pinning effect on the domain walls originating from the created crystallites of the size much smaller than the domain width (correlation length for ferromagnetic exchange interactions). It is also shown that gradually devitrified non-magnetostrictive metallic glass is an excellent model material for verification of N el's theory describing the Rayleigh rule.

  • PDF

The Fabrication of Micro Actuator Used Micro Electro-Magnet and Magnetostrictive Thin Film (마이크로 전자석과 자기변형박막을 이용한 마이크로 엑추에이터의 제작)

  • Seo, Jee-Hoon;Yang, Sang-Sik;Jeong, Jong-Man;Lim, Sang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3328-3330
    • /
    • 1999
  • In this paper, the fabrication of a micro actuator with a micro electromagnet and an actuator diaphragm is presented. The micro electromagnet consists of a magnetic core and a micro inductive planar coil. The actuator diaphragm is the p+ silicon diaphragm on both sides of which magnetostrictive materials are deposited by sputtering. The micro electromagnet is fabricated by sputtering, evaporating, etching and electroplating. The magnetic flux density of the micro electromagnet is measured by using the gauss meter. The deflection of the actuator diaphragm is measured by using the laser vibrometer and optic microscope.

  • PDF

Magnetic Impeadance Effects by the Displacement of Amorphous Ribbon (아몰퍼스 리본의 변위에 의한 자기임피던스 효과)

  • 신용진;소대화;김현욱;임재근;강재덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.73-76
    • /
    • 1999
  • In this thesis, we fabricate a zero-magnetostrictive amorphous ribbon measure the impeadance effect, and then Investigate possibility as a sensor material. $Co_{72.5}$F $e_{0.5}$M $o_{2}$ $B_{15}$ S $i_{5}$ is used as composition of specimen alloy. We first melt the specimen in high frequency induction furnace and then rapidly quench it by using single roll technique. As the result, we obtain a ribbon where thickness is 12${\mu}{\textrm}{m}$, width is 1mm and length is 93mm. Consequently, it is proved through this study that zero-magnetostrictive amorphous ribbon can be used as an excellent magnetic sensor material.rial.l.

  • PDF

Design of a Magnetostrictive MicroActuator (자기변형 마이크로 작동기의 설계)

  • 김도연;박영우;임민철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.174-181
    • /
    • 2004
  • This paper presents the development of a magnetostrictive microactuator. The structural and functional requirements are as follows: it must be a millimeter structure and must achieve controllable displacement with nanometer resolution. Finite Element Analysis(FEA) is used to determine the structure with the most uniform and highest magnetic flux density along the Terfenol-D rod. The microactuator prototype 1 is designed and made based on the FEA. It is observed that the microactuator show some level of hysteresis and that it produces 25 newton in force and 3 ${\mu}{\textrm}{m}$ in displacement with 1.5 amperes of current, and resolution of 250 nm per 0.1 amperes. To improve the performance of the microactuator prototype 1, microactuator prototype 2 is made again with a permanent magnet (PM). It is observed that the microactuator prototype 2 gene.ates 3.3 ${\mu}{\textrm}{m}$ in displacement with 0.9 amperes of current. It means that the microactuator prototype 2 performs better than the microactuator prototype 1.

Topology Design Optimization of a Magnetic System Consisting of Permanent Magnets and Yokes and its Application to the Bias Magnet System of a Magnetostrictive Sensor (영구자석과 요크를 포함한 자기 시스템의 위상최적설계 및 자기 변형 센서의 바이어스 자석 설계에의 응용)

  • Cho, Seung-Hyun;Kim, Yoon-Young;Yoo, Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1703-1710
    • /
    • 2004
  • The objective of this investigation is to formulate and carry out the topology optimization of a magnetic system consisting of permanent magnets and yokes. Earlier investigations on magnetic field topology optimization have been limited on the design optimization of yokes or permanent magnets alone. After giving the motivation for the simultaneous design of permanent magnets and yokes, we develop the topology optimization formulation of the coupled system by extending the technique used in structural problems. In the present development, we will also examine the effects of the functional form for permeability penalization on the optimized topology.

Nondestructive Evaluation of plate structures using the Ultrasonic Transducer OPMT (OPMT 초음파 트랜스듀서를 이용한 평판구조 이상진단)

  • Kim, Yoon-Young;Cho, Seung-Hyun;Lee, Ju-Seung;Sun, Kyung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.423-427
    • /
    • 2004
  • In this work, we propose a new ultrasonic damage inspection method in plate structures. The proposed method employs an OPMT (Orientation-adjustable Patch-type Magnetostrictive Transducer) in order to make the ultrasonic waves focused on the specific target point. For experiments, virtual grid points were set up at every 50 mm in an aluminum plate and two OPMTs were used for inspection. If there exists a crack in a plate, the reflected Lamb wave from the crack is measured in addition to the direct waves from the transmitting transducer to the receiving transducer.

  • PDF

Magnetoelectric Polymer Composites (자기전기 고분자 복합체)

  • Ko, Kyujin;Noh, Byung-Il;Yang, Su-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.4
    • /
    • pp.229-241
    • /
    • 2021
  • Since 2010, polymer-based magnetoelectric (ME) composites have been developed with detailed investigations of multiferroic properties such as piezoelectric, magnetostrictive, and magnetoelectric, etc. In particular, as a piezoelectric polymer, poly(vinylidene fluoride) and its co-polymers have been widely used in ME composites for energy harvesting, health monitoring, environment treatment, and bio-medical applications. In this study, main research trend and selected experimental results of polymer-based ME composites are briefly reviewed with respect to composite structure as well as application field. A conclusion was drawn that the polymer-based ME composites would be feasible as flexible devices or functional membranes in the near future.

Nonlinear dynamics of an adaptive energy harvester with magnetic interactions and magnetostrictive transduction

  • Pedro V. Savi;Marcelo A. Savi
    • Smart Structures and Systems
    • /
    • v.33 no.4
    • /
    • pp.281-290
    • /
    • 2024
  • This work investigates the mechanical energy harvesting from smart and adaptive devices using magnetic interactions. The energy harvester is built from an elastic beam connected to an electric circuit by a magnetostrictive material that promotes energy transduction. Besides, magnetic interactions define the system stability characterizing multistable configurations. The adaptiveness is provided by magnets that can change their position with respect to the beam, changing the system configuration. A mathematical model is proposed considering a novel model to describe magnetic interactions based on the single-point magnet dipole method, but employing multiple points to represent the magnetic dipole, which is more effective to match experimental data. The adaptive behavior allows one to alter the system stability and therefore, its dynamical response. A nonlinear dynamics analysis is performed showing the possibilities to enhance energy harvesting capacity from the magnet position change. The strategy is to perform a system dynamical characterization and afterward, alter the energetic barrier according to the environmental energy sources. Results show interesting conditions where energy harvesting capacity is dramatically increased by changing the system characteristics.