• Title/Summary/Keyword: magnetorheological damper

Search Result 125, Processing Time 0.029 seconds

Constrained rotary MR damper design and its application (자기 유변 유체를 이용한 각도 제한 회전 감쇠기 설계 및 응용)

  • 김상화;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.191-194
    • /
    • 1997
  • Passive, semi-active and active dampers have been used to dissipate energy in mechanical systems. Semi-active dampers have higher performance than passive dampers and require lower power to operate than active dampers. Its damping characteristics can be changed appropriately for varying conditions. In this paper, we developed a semi-active damper based on Magnetorheological(MR) fluid. MR fluid has a variable damping characteristics proportional for the magnetic field intensity. It has several advantages such as high strength, low viscosity, robustness in impurities and wide temperature range of operational stability. We designed a constrained rotary MR damper base on valve mode which can dissipate more energy per unit volume. The system with Bingham characteristics is obtained and proved by the experiment.

  • PDF

Vibration Control of MR Suspension System Considering Damping Force Hysteresis (댐핑력 히스테리시스를 고려한 MR 서스펜션의 진동제어)

  • Seong, Min-Sang;Sung, Kum-Gil;Han, Young-Min;Choi, Seung-Bok;Lee, Ho-Guen
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.381-386
    • /
    • 2007
  • This paper presents vibration control performances of a commercial magnetorheological (MR) suspension via new control strategy considering hysteresis of the field-dependent damping force of MR damper. A commercial MR damper which is applicable to high class passenger vehicle is adopted and its field-dependent damping force is experimentally evaluated. Preisach hysteresis model for the MR damper is identified using experimental first order descending (FOD) curves. Then, a feed-forward compensation strategy for the MR damper is formulated and integrated with a linear quadratic regulation (LQR) feedback controller for the suspension system. Control performances of the proposed control strategy for the MR suspension is experimentally evaluated with quarter vehicle test facility.

  • PDF

Vibration Control of MR Suspension System Considering Damping Force Hysteresis (댐핑력 히스테리시스를 고려한 MR 서스펜션의 진동제어)

  • Seong, Min-Sang;Sung, Kum-Gil;Han, Young-Min;Choi, Seung-Bok;Lee, Ho-Guen
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.3
    • /
    • pp.315-322
    • /
    • 2008
  • This paper presents vibration control performances of a commercial magnetorheological(MR) suspension via new control strategy considering hysteresis of the field-dependent damping force of MR damper. A commercial MR damper which is applicable to high class passenger vehicle is adopted and its field-dependent damping force is experimentally evaluated. Preisach hysteresis model for the MR damper is identified using experimental first order descending(FOD) curves. Then, a feed-forward compensation strategy for the MR damper is formulated and integrated with a linear quadratic regulation(LQR) feedback controller for the suspension system. Control performances of the proposed control strategy for the MR suspension is experimentally evaluated with quarter vehicle test facility.

Modeling and identification of a class of MR fluid foam dampers

  • Zapateiro, Mauricio;Luo, Ningsu;Taylor, Ellen;Dyke, Shirley J.
    • Smart Structures and Systems
    • /
    • v.6 no.2
    • /
    • pp.101-113
    • /
    • 2010
  • This paper presents the results of a series of experiments conducted to model a magnetorheological damper operated in shear mode. The prototype MR damper consists of two parallel steel plates; a paddle covered with an MR fluid coated foam is placed between the plates. The force is generated when the paddle is in motion and the MR fluid is reached by the magnetic field of the coil in one end of the device. Two approaches were considered in this experiment: a parametric approach based on the Bingham, Bouc-Wen and Hyperbolic Tangent models and a non parametric approach based on a Neural Network model. The accuracy to reproduce the MR damper behavior is compared as well as some aspects related to performance are discussed.

Fuzzy Sky-hook Control of Semi-active Suspension System Using Rotary MR Damper (회전형 MR 댐퍼를 이용한 반능동 현가장치의 퍼지 스카이-훅 제어)

  • Cho, Jeong-Mok;Joh, Joong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.701-706
    • /
    • 2007
  • Recently, a number of researches about linear magnetorheological(MR) damper using valve-mode characteristics of MR fluid have sufficiently undertaken, but researches about rotary MR damper using shear-mode characteristics of MR fluid are not enough. In this paper, we performed vibration control of shear-mode MR damper for unlimited rotating actuator of mobile robot. Also fuzzy logic based vibration control for shear-mode MR damper is suggested. The parameters, like scaling factor of input/output and center of the triangular membership functions associated with the different linguistic variables, are tuned by genetic algorithm. Simulation results demonstrate the effectiveness of the fuzzy-skyhook controller for vibration control of shear-mode MR damper under impact force.

Semi-active control of smart building-MR damper systems using novel TSK-Inv and max-min algorithms

  • Askari, Mohsen;Li, Jianchun;Samali, Bijan
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.1005-1028
    • /
    • 2016
  • Two novel semi-active control methods for a seismically excited nonlinear benchmark building equipped with magnetorheological dampers are presented and evaluated in this paper. While a primary controller is designed to estimate the optimal control force of a magnetorheological (MR) damper, the required voltage input for the damper to produce such desired control force is achieved using two different methods. The first technique uses an optimal compact Takagi-Sugeno-Kang (TSK) fuzzy inverse model of MR damper to predict the required voltage to actuate the MR dampers (TSKFInv). The other voltage regulator introduced here works based on the maximum and minimum capacities of MR damper at each time-step (MaxMin). Both semi-active algorithms developed here, use acceleration feedback only. The results demonstrate that both TSKFInv and MaxMin algorithms are quite effective in seismic response reduction for wide range of motions from moderate to severe seismic events, compared with the passive systems and performs better than original and Modified clipped optimal controller systems, known as COC and MCOC.

Modeling of Shear-mode Rotary MR Damper Using Multi-layer Neural Network (다층신경망을 이용한 전단모드 회전형 MR 댐퍼의 모델링)

  • Cho, Jeong-Mok;Huh, Nam;Joh, Joong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.875-880
    • /
    • 2007
  • Scientific challenges in the field of MR(magnetorheological) fluids and devices consist in the development of MR devices, the mathematical modeling and simulation of MR devices, and the development of (optimal) control algorithm for MR device systems. To take a maximum advantage of MR fluids in control applications a reliable mathematical model, which predicts their nonlinear characteristics, is needed. A inverse model of the MR device is required to calculate current(or voltage) input of MR damper, which generates required damping force. In this paper, we implemented test a bench for shear mode rotary MR damper and laboratory tests were performed to study the characteristics of the prototype shear-mode rotary MR damper. The direct identification and inverse dynamics modeling for shear mode rotary MR dampers using multi-layer neural networks are studied.

Sliding Mode Control for an Intelligent Landing Gear Equipped with Magnetorheological Damper

  • Viet, Luong Quoc;Lee, Hyo-sang;Jang, Dae-sung;Hwang, Jai-hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.2
    • /
    • pp.20-27
    • /
    • 2020
  • Several uncertainties in the landing environment of an aircraft are not considered, such as the falling speed, ambient temperature, and sensor noise. These uncertainties negatively affect the performance of the controller applied to a landing gear. The sliding mode control (SMC) method, which maintains the optimal performance of a controller under uncertainties, is used in this study. The landing gear is equipped with a magnetorheological damper that changes the yield shear stress according to the applied magnetic field. The applied controller employs a hybrid control combining Skyhook control and force control. The SMC maintains the optimal performance of the hybrid control by minimizing the tracking error of the damper force, even in various landing environments where parameter uncertainties are applied. The effect of SMC is verified through co-simulation results from Simscape and Simulink.