• Title/Summary/Keyword: magnetoencephalography(MEG)

Search Result 36, Processing Time 0.023 seconds

Language Lateralization Using Magnetoencephalography (MEG): A Preliminary Study (뇌자도를 이용한 언어 편재화: 예비 연구)

  • Lee, Seo-Young;Kang, Eunjoo;Kim, June Sic;Lee, Sang-Kun;Kang, Hyejin;Park, Hyojin;Kim, Sung Hun;Lee, Seung Hwan;Chung, Chun Kee
    • Annals of Clinical Neurophysiology
    • /
    • v.8 no.2
    • /
    • pp.163-170
    • /
    • 2006
  • Backgrounds: MEG can measure the task-specific neurophysiologic activity with good spatial and time resolution. Language lateralization using noninvasive method has been a subject of interest in resective brain surgery. We purposed to develop a paradigm for language lateralization using MEG and validate its feasibility. Methods: Magnetic fields were obtained in 12 neurosurgical candidates and one volunteer for language tasks, with a 306 channel whole head MEG. Language tasks were word listening, reading and picture naming. We tested two word listening paradigms: semantic decision of meaning of abstract nouns, and recognition of repeated words. The subjects were instructed to silently name or read, and respond with pushing button or not. We decided language dominance according to the number of acceptable equivalent current dipoles (ECD) modeled by sequential single dipole, and the mean magnetic field strength by root mean square value, in each hemisphere. We collected clinical data including Wada test. Results: Magnetic fields evoked by word listening were generally distributed in bilateral temporoparietal areas with variable hemispheric dominance. Language tasks using visual stimuli frequently evoked magnetic field in posterior midline area, which made laterality decision difficult. Response during task resulted in more artifacts and different results depending on responding hand. Laterality decision with mean magnetic field strength was more concordant with Wada than the method with ECD number of each hemisphere. Conclusions: Word listening task without hand response is the most feasible paradigm for language lateralization using MEG. Mean magnetic field strength in each hemisphere is a proper index for hemispheric dominance.

  • PDF

Adaptive Noise Subtraction in Auditory Evoked Field (적응 필터를 이용한 청각 자극에 의한 뇌자도 신호에서 노이즈 제거)

  • 이동훈;안창범
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.10
    • /
    • pp.606-610
    • /
    • 2003
  • Noise subtraction using reference channel data has been used to improve signal-to-noise ratio in magnetoencephalography. In this paper, an adaptive noise subtraction model is proposed and parameters for the model are optimized. A criterion to determine an optimal update period for the filter coefficients is proposed based on the ratio of peak amplitude of evoked field (N100m) divided by the output standard deviation. Experiments are carried out using a 40 channel MEG system. From the experiments, the proposed noise subtraction method shows superior performances over existing non-adaptive methods. Two-dimensional topographic map is shown for a diagnosis with a cubic spline interpolation.

Magnetoencephalography Source Localization using Improved Downhill Simplex Method in Frequency Domain (개선된 다운힐 심플렉스 법을 이용한 주파수 영역에서의 뇌자도 신호원 추정)

  • Kim, Byeong-Jun;An, Kwang-Ok;Lee, Chany;Jung, Hyun-Kyo
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.3
    • /
    • pp.231-238
    • /
    • 2008
  • Nelder-Mead downhill simplex method (DSM), a kind of deterministic optimization algorithms, has been used extensively for magnetoencephalography(MEG) dipolar source localization problems because it dose not require any functional differentiation. Like many other deterministic algorithms, however, it is very sensitive to the choice of initial positions and it can be easily trapped in local optima when being applied to complex inverse problems with multiple simultaneous sources. In this paper, some modifications have been made to make up for DSM's limitations and improve the accuracy of DSM. First of all, initial point determination method for DSM using magnetic fields on the sensor surface was proposed. Secondly, Univariant-DSM combined DSM with univariant method was proposed. To verify the performance of the proposed method, it was applied to simulated MEG data and practical MEG measurements.

The cerebral activation related to Korean word ambiguity: MEG study (한국어 어휘의 중의성 해결과 관련된 대뇌활동: MEG 연구)

  • Yu, Gi-Soon;Kim, Choong-Myung;Kim, June-Sic;Chung, Chun-Kee;Nam, Ki-Chun
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2006.06a
    • /
    • pp.61-65
    • /
    • 2006
  • 본 연구는 한국어 어휘중의성 해결과정에 관련된 대뇌활동을 살펴보기 위하여 MEG(magnetoencephalography)를 이용한 실험을 실시하였다. 일차적으로 기존의 중의성 관련 fMRI 실험 결과들이 MEG를 이용한 신호원 국소화 결과와 유사한 패턴을 보이는지 확인하였고, 본 실험의 주요 목적인 중의성 관련 처리과정에 기저하는 하위 처리과정이 어떠한 기능적 처리 요소들로 분해될 수 있는 지에 대해서도 시간 해상도가 높은 MEG의 특성을 이용하여 관찰하였다. 분석 결과, 한국어 중의어 해소과정의 하위처리 과정은 어휘의미 접속이라는 기본적인 과정 비에, 이들의 의미분지를 유발하는 단서의 유무가 그 활성화 영역의 시간적인 패턴과 중의성 해결을 위한 지속시간에 영향을 미치는 것으로 확인되었다.

  • PDF

Partial Principal Component Elimination Method and Extended Temporal Decorrelation Method for the Exclusion of Spontaneous Neuromagnetic Fields in the Multichannel SQUID Magnetoencephalography

  • Kim, Kiwoon;Lee, Yong-Ho;Hyukchan Kwon;Kim, Jin-Mok;Kang, Chan-Seok;Kim, In-Seon;Park, Yong-Ki
    • Progress in Superconductivity
    • /
    • v.4 no.2
    • /
    • pp.114-120
    • /
    • 2003
  • We employed a method eliminating a temporally partial principal component (PC) of multichannel-recorded neuromagnetic fields for excluding spatially correlated noises from event-evoked signals. The noises in magnetoencephalography (MEG) are considered to be mainly spontaneous neuromagnetic fields which are spatially correlated. In conventional MEG experiments, the amplitude of the spontaneous neuromagnetic field is much lager than that of the evoked signal and the synchronized characteristics of the correlated rhythmic noise makes it possible for us to extract the correlation noises from the evoked signal by means of the general PC analysis. However, the whole-time PC of the fields still contains a little projection component of the evoked signal and the elimination of the PC results in the distortion of the evoked signal. Especially, the distortion will not be negligible when the amplitude of the evoked signal is relatively large or when the evoked signals have a spatially-asymmetrical distribution which does not cancel out the corresponding elements of the covariance matrix. In the period of prestimulus, there are only the spontaneous fields and we can find the pure noise PC that is not including the evoked signal. Besides that, we propose a method, called the extended temporal decorrelation method (ETDM), to suppress the distortion of the noise PC from remanent evoked signal components. In this study, we applied the Partial Principal component elimination method (PPCE) and ETDM to simulated signals and the auditory evoked signals that had been obtained with our homemade 37-channel magnetometer-based SQUID system. We demonstrate here that PPCE and ETDM reduce the number of epochs required in averaging to about half of that required in conventional averaging.

  • PDF

Statistical network analysis for epilepsy MEG data

  • Haeji Lee;Chun Kee Chung;Jaehee Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.6
    • /
    • pp.561-575
    • /
    • 2023
  • Brain network analysis has attracted the interest of neuroscience researchers in studying brain diseases. Magnetoencephalography (MEG) is especially proper for analyzing functional connectivity due to high temporal and spatial resolution. The application of graph theory for functional connectivity analysis has been studied widely, but research on network modeling for MEG still needs more. Temporal exponential random graph model (TERGM) considers temporal dependencies of networks. We performed the brain network analysis, including static/temporal network statistics, on two groups of epilepsy patients who removed the left (LT) or right (RT) part of the brain and healthy controls. We investigate network differences using Multiset canonical correlation analysis (MCCA) and TERGM between epilepsy patients and healthy controls (HC). The brain network of healthy controls had fewer temporal changes than patient groups. As a result of TERGM, on the simulation networks, LT and RT had less stable state than HC in the network connectivity structure. HC had a stable state of the brain network.

An ICA-Based Subspace Scanning Algorithm to Enhance Spatial Resolution of EEG/MEG Source Localization (뇌파/뇌자도 전류원 국지화의 공간분해능 향상을 위한 독립성분분석 기반의 부분공간 탐색 알고리즘)

  • Jung, Young-Jin;Kwon, Ki-Woon;Im, Chang-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.6
    • /
    • pp.456-463
    • /
    • 2010
  • In the present study, we proposed a new subspace scanning algorithm to enhance the spatial resolution of electroencephalography (EEG) and magnetoencephalography(MEG) source localization. Subspace scanning algorithms, represented by the multiple signal classification (MUSIC) algorithm and the first principal vector (FINE) algorithm, have been widely used to localize asynchronous multiple dipolar sources in human cerebral cortex. The conventional MUSIC algorithm used principal component analysis (PCA) to extract the noise vector subspace, thereby having difficulty in discriminating two or more closely-spaced cortical sources. The FINE algorithm addressed the problem by using only a part of the noise vector subspace, but there was no golden rule to determine the number of noise vectors. In the present work, we estimated a non-orthogonal signal vector set using independent component analysis (ICA) instead of using PCA and performed the source scanning process in the signal vector subspace, not in the noise vector subspace. Realistic 2D and 3D computer simulations, which compared the spatial resolutions of various algorithms under different noise levels, showed that the proposed ICA-MUSIC algorithm has the highest spatial resolution, suggesting that it can be a useful tool for practical EEG/MEG source localization.

Measurement of the occipital alpha rhythm and temporal tau rhythm by using magnetoencephalography

  • Kim, J.E.;Gohel, Bakul;Kim, K.;Kwon, H.;An, Kyung-min
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.4
    • /
    • pp.34-37
    • /
    • 2015
  • Developing Magnetoencephalography (MEG) based on Superconducting Quantum Interference Device (SQUID) facilitates to observe the human brain functions in non-invasively and high temporal and high spatial resolution. By using this MEG, we studied alpha rhythm (8-13 Hz) that is one of the most predominant spontaneous rhythm in human brain. The 8-13 Hz rhythm is observed in several sensory region in the brain. In visual related region of occipital, we call to alpha rhythm, and auditory related region of temporal call to tau rhythm, sensorimotor related region of parietal call to mu rhythm. These rhythms are decreased in task related region and increased in task irrelevant regions. This means that these rhythms play a pivotal role of inhibition in task irrelevant region. It may be helpful to attention to the task. In several literature about the alpha-band inhibition in multi-sensory modality experiment, they observed this effect in the occipital and somatosensory region. In this study, we hypothesized that we can also observe the alpha-band inhibition in the auditory cortex, mediated by the tau rhythm. Before that, we first investigated the existence of the alpha and tau rhythm in occipital and temporal region, respectively. To see these rhythms, we applied the visual and auditory stimulation, in turns, suppressed in task relevant regions, respectively.

A Helmet-type MEG System with $1^{st}$ order SQUID Gradiometer Located in Vacuum (진공조에 위치한 1차 SQUID 미분계를 이용한 헬멧형 뇌자도 장치의 제작)

  • Yu, K.K.;Kim, K.;Lee, Y.H.;Kim, J.M.
    • Progress in Superconductivity
    • /
    • v.11 no.1
    • /
    • pp.78-82
    • /
    • 2009
  • We have fabricated a helmet type magnetoencephalogrphy(MEG) with a $1^{st}$ order gradiometer in vacuum to improve the signal-to-noise ratio(SNR) and the boil-off rate of liquid helium(LHe). The axial type first-order gradiometer was fabricated with a double relaxation oscillation SQUID(DROS) sensor which was directly connected with a pickup coil. The neck space of LHe dewar was made to be smaller than that of a conventional dewar, but the LHe boil-off ratio appeared to increase. To reduce the temperature of low Tc SQUID sensor and pickup coil to 9 K, a metal shield made of, such as copper, brass or aluminum, have been usually used for thermal transmission. But the metal shield exhibited high thermal noise and eddy current fluctuation. We quantified the thermal noise and the eddy current fluctuation of metal. In this experiment, we used the bobbin which was made of an alumina to wind Nb superconductive wire for pickup coil and the average noise of coil-in-vacuum type MEG system was $3.5fT/Hz^{1/2}$. Finally, we measured the auditory evoked signal to prove the reliability of coil-in-vacuum type MEG system.

  • PDF

ERF Components Patterns of Causal Question Generation during Observation of Biological Phenomena : A MEG Study (생명현상 관찰에서 나타나는 인과적 의문 생성의 ERF 특성 : MEG 연구)

  • Kwon, Suk-Won;Kwon, Yong-Ju
    • Journal of Science Education
    • /
    • v.33 no.2
    • /
    • pp.336-345
    • /
    • 2009
  • The purpose of this study is to analysis ERF components patterns of causal questions generated during the observation of biological phenomenon. First, the system that shows pictures causing causal questions based on biological phenomenon (evoked picture system) was developed in a way of cognitive psychology. The ERF patterns of causal questions based on time-series brain processing was observed using MEG. The evoked picture system was developed by R&D method consisting of scientific education experts and researchers. Tasks were classified into animal (A), microbe (M), and plant (P) tasks according to biological species and into interaction (I), all (A), and part (P) based on the interaction between different species. According to the collaboration with MEG team in the hospital of Seoul National University, the paradigm of MEG task was developed. MEG data about the generation of scientific questions in 5 female graduate student were collected. For examining the unique characteristic of causal question, MEG ERF components were analyzed. As a result, total 100 pictures were produced by evoked picture and 4 ERF components, M1(100~130ms), M2(220~280ms), M3(320~390ms), M4(460~520ms). The present study could guide personalized teaching-learning method through the application and development of scientific question learning program.

  • PDF