• Title/Summary/Keyword: magnetocrystalline anisotropy

Search Result 62, Processing Time 0.029 seconds

A Study on the Magnetic Properties of the Sm2Fe17Nx-type Material Produced by a Combination of HDDR Process and Nitrogenation

  • Pan, Y.R;Kwon, H.W
    • Journal of Magnetics
    • /
    • v.3 no.4
    • /
    • pp.99-104
    • /
    • 1998
  • The $ Sm_2Fe_{17}N_x $materials were prepared by the combination consisting of the HDDR (hydrogenation, disproportionation, desorption, and recombination) process and nitrogenation or by the conventional way consisting of nitrogenation only, and the magnetic and thermomagnetic properties of the materials were investigated. The magnetic characterisation of the prepared $ Sm_2Fe_{17}N_x $ materials was performed using a VSM. Thermal stability of the materials was evaluated using a DTA under Ar gas atmosphere. The thermomagnetic characteristics of the materials were examined using a Sucksmith-type balance. The previously HDDR-treated Sm2Fe17parent alloy was found to be nitrogenated more easily compared to the ordinary $ Sm_2Fe_{17}N_x $alloy. The $ Sm_2Fe_{17}N_x $ material produced by the combination method showed a high coercivity (12.9 kOe) even in the state of coarse particle size (around 60 ${\mu}{\textrm}{m}$). It was also revealed that the $ Sm_2Fe_{17}N_x $ material produced by the material produced by the combination showed an unusual TMA tracing featured with a low and constant magnetisation at lower temperature range and a peak just before the Curie temperature. This thermomagnetic characteristic was interpreted in terms of the competition between two counteracting effects; the decrease in magnetisation due to the thermal agitation at an elevated temperature and the increase in magnetisation resulting from the rotation of magnetisation of the fine grains comparable to a critical single domain size due to the decreased magnetocrystalline anisotropy at an elevated temperature.

  • PDF

Magnetic Properties of Thin Films of a Magnetocaloric Material FeRh

  • Jekal, Soyoung;Kwon, Oryong;Hong, Soon Cheol
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2013.05a
    • /
    • pp.18-18
    • /
    • 2013
  • A FeRh alloy is a well-known efficient magnetocaloric material and some experimental and theoretical studies of bulk FeRh have been reported already by several groups. In this study we report first-principles calculations on magnetic properties of different thickness FeRh thin films in order to investigate the possibility to enhance further the magnetocaloric efficiency. We used Vienna Ab-initio Simulation Package (VASP) code. We found that the FeRh thin films have quite different magnetic properties from the bulk when the thickness is thinner than 6-atomic-layers. While bulk FeRh has a G-type antiferromagnetic (AFM) state, thin films which are thinner than 6-atomic-layers have an A-type AFM state or a ferromagnetic(FM) state. We will discuss possibility of magnetic phase transitions of the FeRh thin films in the view point of a magnetocaloric effect. And we found 4-, 5-, 6-layers films with Fe surface and 7-layers film with Rh surface are FM and they have dozens eV magnetocrystalline anisotropy (MCA) energy. MCA energy leads to determine energy barrier when magnetic states are changed by external magnetic field.

  • PDF

Thermomagnetic Characteristics of the Hard Magnetic Materials with a Fine Microstructure due to a HDDR Process

  • Kwon, H.W.;Kim, Yoon-B.;Jeung, W.Y.
    • Journal of Magnetics
    • /
    • v.4 no.1
    • /
    • pp.26-32
    • /
    • 1999
  • The HDDR process can be used as an effective means of processing of the coercive Nd-Fe-B-type or the Sm2Fe17Nx materials. The HDDR (hydrogenation, disproportionation, desorption, recombination) processed materials are feartured with a very fine microstructure. The thermomagnetic characteristics of the Nd-Fe-B-type or the Sm2Fe17Nx materials with fine microstructure due to the HDDR process were investigated. It has been found that the fine-microstructured hard magnetic materials showed an unusual TMA (Thermomagnetic analysis) tracting featured with a low and constant magnetization at lower temperature range and a peak just below their Curie temperatures when a low external field is applied. This thermomagnetic characteristic was immediate particularly in the TMA with a low applied field. This thermomagnetic characteristic was interpreted in terms of the competition between two counteracting effects; the decrease in magnetication due to the thermal agitation at an elevated temperature and the increase in magnetization resulting from the rotation of magnetization of the fine grains comparable to a critical single domain size due to the decreased magnetocrystalline anisotropy at an elevated temperature.

  • PDF

Microstructure and Magnetic Properties of Nd-Fe-B Sintered Magnet with the Variation of Particle Size (분말입도에 따른 Nd-Fe-B 소결자석의 미세조직 변화 및 자기적 특성)

  • Shin, Dongwon;Kim, Dong-Hwan;Park, Young-Cheol;Kim, Jeong-Gon
    • Journal of Powder Materials
    • /
    • v.23 no.6
    • /
    • pp.447-452
    • /
    • 2016
  • Neodymium-iron-boron (Nd-Fe-B) sintered magnets have excellent magnetic properties such as the remanence, coercive force, and the maximum energy product compared to other hard magnetic materials. The coercive force of Nd-Fe-B sintered magnets is improved by the addition of heavy rare earth elements such as dysprosium and terbium instead of neodymium. Then, the magnetocrystalline anisotropy of Nd-Fe-B sintered magnets increases. However, additional elements have increased the production cost of Nd-Fe-B sintered magnets. Hence, a study on the control of the microstructure of Nd-Fe-B magnets is being conducted. As the coercive force of magnets improves, the grain size of the $Nd_2Fe_{14}B$ grain is close to 300 nm because they are nucleation-type magnets. In this study, fine particles of Nd-Fe-B are prepared with various grinding energies in the pulverization process used for preparing sintered magnets, and the microstructure and magnetic properties of the magnets are investigated.

Magnetic properties of thin films of a magnetocaloric material FeRh

  • Jekal, Soyoung;Kwon, Oryong
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.294-298
    • /
    • 2013
  • A FeRh alloy is a well-known efficient magnetocaloric material and some experimental and theoretical studies of bulk FeRh have been reported already by several groups. In this study we report first-principles calculations on magnetic properties of different thickness FeRh thin films in order to investigate the possibility to enhance further the magnetocaloric efficiency. We used two methods of a Vienna Ab-initio Simulation Package (VASP) code and SIESTA package. We found that the FeRh thin films have quite different magnetic properties from the bulk when the thickness is thinner than 6-atomic-layers. While bulk FeRh has a G-type antiferromagnetic(AFM) state, thin films which are thinner than 6-atomic-layers have an A-type AFM state or a ferromagnetic (FM) state. We will discuss possibility of magnetic phase transitions of the FeRh thin films in the view point of a magnetocaloric effect. And we found 4-, 5-, 6-layers films with Fe surface and 7-layers film with Rh surface are FM and they have relatively small magnetocrystalline anisotropy (MCA) energy about less than 70 meV. The small MCA energy leads to reduction of the strength of magnetic field in operating a magnetic refrigerator.

  • PDF

First Principles Calculations on Magnetism of CrPt3(001) Thin Films (CrPt3(001) 박막의 자성: 제일원리계산)

  • Jeong, Tae Sung;Jekal, Soyoung;Rhim, S.H.;Hong, S.C.
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.2
    • /
    • pp.41-48
    • /
    • 2017
  • Recent study shows that ordered alloy of $L1_2$ $XPt_3$ (M = V, Cr, Mn, Co, and Fe) exhibits various magnetic phases such as ferromagnetic-to-antiferromagnetic transition at the $MnPt_3$ surface. Moreover, it has been argued that $CrPt_3$, in particular, possess large magnetocrystalline anisotropy and Kerr rotation with possible violation of Hund's rule. As such, we extend our work to thickness dependence of the magnetic structure of $CrPt_3$ thin film using density functional theory. Magnetic ground state of the bulk $CrPt_3$ turns out to be ferromagnetic (FM), where other magnetic phases such as A-type (A-AF), C-type (C-AF), and G-type antiferromagnetic (G-AF) state have higher total energies than FM by 0.517, 0.591, and 0.183 eV, respectively, and magnetic moments of Cr in bulk are respectively 2.807 (FM), 2.805 (A-AF), 2.794 (C-AF) and $2.869_{{\mu}_B}$ (G-AF). We extend our study to $CrPt_3$(001) thin films with CrPt-and Pt-termination. The thickness and surface-termination dependences of magnetism are investigated for 3-9 monolayers (ML), where different magnetic phases from bulk emerge: C-AF for CrPt-terminated 3 ML and G-AF for Pt-terminated 5 ML have energy difference relative to FM by 8 and 54 meV, respectively. Furthermore, thickness- and surface-termination-dependent magnetocrystalline anisotropies of the $CrPt_3$(001) films are discussed.

Fe3O4/CoFe2O4 superlattices; MBE growth and magnetic properties

  • Quang, Van Nguyen;Shin, Yooleemi;Duong, Anh Tuan;Nguyen, Thi Minh Hai;Cho, Sunglae;Meny, Christian
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.242-242
    • /
    • 2016
  • Magnetite, Fe3O4, is a ferrimagnet with a cubic inverse spinel structure and exhibits a metal-insulator, Verwey, transition at about 120 K.[1] It is predicted to possess as half-metallic nature, 100% spin polarization, and high Curie temperature (850 K). Cobalt ferrite is one of the most important members of the ferrite family, which is characterized by its high coercivity, moderate magnetization and very high magnetocrystalline anisotropy. It has been reported that the CoFe2O4/Fe3O4 bilayers represent an unusual exchange-coupled system whose properties are due to the nature of the oxide-oxide super-exchange interactions at the interface [2]. In order to evaluate the effect of interface interactions on magnetic and transport properties of ferrite and cobalt ferrite, the CoFe2O4/Fe3O4 superlattices on MgO (100) substrate have been fabricated by molecular beam epitaxy (MBE) with the wave lengths of 50, and $200{\AA}$, called $25{\AA}/25{\AA}$ and $100{\AA}/100{\AA}$, respectively. Streaky RHEED patterns in sample $25{\AA}/25{\AA}$ indicate a very smooth surface and interface between layers. HR-TEM image show the good crystalline of sample $25{\AA}/25{\AA}$. Interestingly, magnetization curves showed a strong antiferromagnetic order, which was formed at the interfaces.

  • PDF

The Power Loss Characteristics of Mn-Zn Ferrites at MHz Region with Sintering Condition (소성조건에 따른 MHz 대역의 Mn-Zn ferrite 전력손실 특성)

  • Suh J.J.;Song B.M
    • Resources Recycling
    • /
    • v.12 no.6
    • /
    • pp.26-31
    • /
    • 2003
  • The power loss characteristics of Mn-Zn ferrite were observed with the sintering temperature. In case of $1150 ^{\circ}C$ sintering, the core loss increased with measuring temperature, and does not have minimum value at the point where the magnetocrystalline anisotropy be 'zero'. This reason mainly due to the change of core loss mechanism with grain size which affects residual loss. The grain size and sintered density slightly increased with equilibrium oxygen partial pressure at$ 1150 ^{\circ}C$ sintering. The resistivity and initial permeability showed no significance with atmosphere, these results due to complex effect of $Fe^{2+}$ concentration and microstructure change. The core loss at $100^{\circ}C$ decreased as the equilibrium oxygen partial pressure increased.e increased.

MBE Growth and Electrical and Magnetic Properties of CoxFe3-xO4 Thin Films on MgO Substrate

  • Nguyen, Van Quang;Meny, Christian;Tuan, Duong Ahn;Shin, Yooleemi;Cho, Sunglae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.370.1-370.1
    • /
    • 2014
  • Giant magnetoresistance (GMR), tunneling magnetoresistance (TMR), and magnetic random-access memory (MRAM) are currently active areas of research. Magnetite, Fe3O4, is predicted to possess as half-metallic nature, ~100% spin polarization (P), and has a high Curie temperature (TC~850 K). On the other hand, Spinel ferrite CoFe2O4 has been widely studies for various applications such as magnetorestrictive sensors, microwave devices, biomolecular drug delivery, and electronic devices, due to its large magnetocrystalline anisotropy, chemical stability, and unique nonlinear spin-wave properties. Here we have investigated the magneto-transport properties of epitaxial CoxFe3-xO4 thin films. The epitaxial CoxFe3-xO4 (x=0; 0.4; 0.6; 1) thin films were successfully grown on MgO (100) substrate by molecular beam epitaxy (MBE). The quality of the films during growth was monitored by reflection high electron energy diffraction (RHEED). From temperature dependent resistivity measurement, we observed that the Werwey transition (1st order metal-insulator transition) temperature increased with increasing x and the resistivity of film also increased with the increasing x up to $1.6{\Omega}-cm$ for x=1. The magnetoresistance (MR) was measured with magnetic field applied perpendicular to film. A negative transverse MR was disappeared with x=0.6 and 1. Anomalous Hall data will be discussed.

  • PDF

Magnetic properties of $(Nd_{1-x}R_x)_2Fe_{14}B$ (R=Y, Pr) ($(Nd_{1-x}R_x)_2Fe_{14}B$ (R=Y, Pr)의 자기특성)

  • 김만중;김윤배;김희태;김택기
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.5
    • /
    • pp.271-274
    • /
    • 1998
  • Spin reorientation and magnetocrystalline anisotropy of magnetically aligned $(Nd_{1-x}R_x)_2Fe_{14}B$ (R=Y, Pr) power were studied. The spin reorientation temperature $(T_{SR})$ of $(Nd_{1-x}R_x)_2Fe_{14}B$ decreases linearly by increasing Pr-substitution with the ratio of ${\Delta}T_{SR}=-1.35$ K/Pr at.% in composition range of 0$\leq$x$\leq$0.75. The spin reorientation temperature of $(Nd_{1-x}R_x)_2Fe_{14}B$ decreases by increasing Pr-substitution to 118 K (x=0.5) then increases to 122 K (x=0.75). The spin reorientation angle at 4.2 K decreases by increasing rare earth substitution with the ratio of $\Delta$SRA=-0.073$^{\circ}$/Y at.% and $\Delta$SRA=-0.258$^{\circ}$/Pr at.% in composition range of 0$\leq$x$\leq$0.5. The spin reorientation is expected to disappear at x$\geq$0.9 in case of $(Nd_{1-x}R_x)_2Fe_{14}B$ and at x$\geq$0.8 in case of $(Nd_{1-x}R_x)_2Fe_{14}B$.

  • PDF