• Title/Summary/Keyword: magneto-rheological elastomer

Search Result 38, Processing Time 0.03 seconds

A Study on Rolling Friction Characteristics of Magneto-Rheological Elastomer under Magnetic Fields (자기장 영향에 따른 자기유변탄성체의 구름 마찰 특성 연구)

  • Lian, Chenglong;Lee, Kwang-Hee;Kim, Cheol-Hyun;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.30 no.4
    • /
    • pp.234-239
    • /
    • 2014
  • Magneto-rheological elastomer (MR elastomer) is a smart material, because it has mechanical properties that change under a magnetic field. An MR elastomer changes its stiffness characteristics when the inner particles (iron particles) align along the direction of a magnetic field. There has been much research to make use of this characteristic to control vibration issues in various mechanical systems, such as for mounting systems in the automotive field, home appliances, etc. Furthermore, the friction and wear properties of MR elastomer have been studied, as these relate to the durability of the material needed to meet engineering requirements. Rolling friction (or rolling resistance) is one of these friction properties, but has not yet been studied in the context of MR elastomers. In this study, an MR elastomer is fabricated in the shape of a hollow cylinder to evaluate the rolling friction characteristic under a magnetic field. The test apparatus is setup and a strain gauge is used to calculate the rolling resistance under test conditions. Permanent magnets are used to supply the magnetic field during tests. The load and rolling speed conditions are also considered for the tests. The test results show that rolling friction characteristic has a different trend under different magnetic field, load, and rolling speed conditions. It is assumed that the stiffness change of an MR elastomer under a magnetic field has an effect on the rolling friction characteristic of the MR elastomer. For the future work, the rolling friction characteristics of MR elastomers will be controlled by adjusting the strength of the magnetic field using electromagnets.

Measurement of Shear Modulus Increment Ratio of Magneto-rheological Elastomer based on Silicon Matrix due to Induced Magnetic field (Silicon Matrix MRE 의 인가자기장에 따른 전단계수 증가율 측정)

  • Oh, Jae-Eung;Roh, Jeong-Joon;Lee, Sun-Hoon;Kim, Jin-Su;Jeong, Un-Chang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.288-291
    • /
    • 2014
  • MRE(Magneto-rheological Elastomer) is a material which shows reversible and various modulus in magnetic field. Comparing to conventional rubber vibration isolator, MREs are able to absorb broader frequency range of vibration. These characteristic phenomena result from the orientation of magnetic particle (i.e., chain-like formation) in rubber matrix. In this study, Silicon was used as a matrix in order to manufacture MREs. Magnetic reactive powder(MRP), having rapid magnetic reaction, was selected as a magnetic particle to give magnetic field reactive modulus. The mechanical properties of manufactured MREs were measured with the application of magnetic field. The analysis of MR effect was carried out by FFT analyzer with various induced magnetic field. As the addition of CIP and induced magnetic field intensity increased, increment of MR effect was observed.

  • PDF

Experimental Evaluation on Shear Modulus of MRE due to MRP Coating and Induced Current (Magnetic Reactive Particle 코팅 및 인가전류에 따른 Magnetorheological Elastomer 의 전단계수 측정)

  • Oh, Jae-Eung;Jeong, Un-Chang;Kim, Jin-Su;Yoon, Jung-Min;Roh, Jeong-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.927-929
    • /
    • 2014
  • MRE(Magneto-rheological Elastomer) is a material which shows reversible and various modulus in magnetic field. Comparing to conventional rubber vibration isolator, MREs are able to absorb broader frequency range of vibration. These characteristic phenomena result from the orientation of magnetic particle (i.e., chain-like formation). Magnetic reactive powder(MRP), having rapid magnetic reaction, was selected as a magnetic particle to give magnetic field reactive modulus. The mechanical properties of manufactured MREs were measured with the application of magnetic field. The analysis of MR effect was carried out by FFT analyzer with various induced current. As induced magnetic field intensity increased and coated with MRP, increment of MR effect was observed.

  • PDF

The Variation Rate of Shear Modulus for Anisotropic Magneto-rheological Elastomer due to Volume Fraction of CIP (CIP 부피비에 따른 이방성 MRE의 전단계수 변화율)

  • Jeong, Un-Chang;Yoon, Ji-Hyun;Yang, In-Hyung;Lee, You-Yub;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1132-1137
    • /
    • 2011
  • MRE(magneto-rheological elastomers) is a material which shows reversible and various modulus in magnetic field. Comparing to conventional rubber vibration isolator, MREs are able to absorb vibration of broader frequency range. These characteristic phenomena result from the orientation of magnetic particles named carbonyl iron powder(CIP) in rubber matrix. In this paper, simulation on variation rate of shear modulus for anisotropic MRE due to volume fraction of CIP and an effective permeability model was applied to predict the field-induced shear modulus of MREs. Also, the variation rate of shear modulus for anisotropic MRE was derived using magneto-mechanical theory. Based on Maxwell-Garnett mixing rule, the increment of shear modulus was calculated to evaluate the shear modulus of MREs with column structure of CIP due to induced current. The simulation results on variation rate of shear modulus can be applied to the variable mechanical system of MRE such as tunable vibration absorber, stiffness variable bush and mount.

Measurement of mechanical properties of Magneto-rhological Elastomer due to current and volume ratio of Carbonyl Iron Power (인가전류 세기와 CIP 성분비에 따른 MRE 의 기계적 물성 측정)

  • Oh, Jae-Eung;Yoon, Ji-Hyun;Yoon, Kyu-Seo;Chung, Kyung-Ho;Cho, Hyun-Chul;Lee, Seong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.791-794
    • /
    • 2008
  • MRE(Magneto-rheological Elastomer) is a material which shows reversible and various modulus in magnetic field. Comparing to conventional rubber vibration isolator, MREs are able to absorb broader frequency range of vibration. These characteristic phenomena result from the orientation of magnetic particle (i.e., chain-like formation) in rubber matrix. In this study, NR was used as a matrix in order to manufacture MREs. Magnetic reactive powder(MRP), having rapid magnetic reaction, was selected as a magnetic particle to give magnetic field reactive modulus. The mechanical properties of manufactured MREs were measured without the application of magnetic field. The results showed that the tensile property and resilience were decreased while the hardness was increased with the addition of CIP. The analysis of MR effect was carried out by FFT analyzer with various magnetic flux. As the addition of MRP and magnetic flux increased, increment of MR effect was observed.

  • PDF