• Title/Summary/Keyword: magneto-rheological dampers

Search Result 57, Processing Time 0.025 seconds

Analysis on the Effects of the Lower Extremities Muscle Activation during Muscular Strength Training on an Unstable Platform with Magneto-Rheological Dampers (MR 댐퍼를 적용한 불안정판에서 하지 근력 훈련이 근 활성도에 미치는 영향 분석)

  • Choi, Y.J.;Piao, Y.J.;Kwon, T.K.;Kim, D.W.;Kim, J.J.;Kim, N.G.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.5
    • /
    • pp.636-646
    • /
    • 2007
  • Adequate postural control depends on the spatial and temporal integration of vestibular, visual, and somatosensory information. Especially, the musculoskeletal function is essential to maintain the postural control. The experimental studies was performed on the muscular activities in the lower extremities during maintaining and moving exercises on an unstable platform with Magneto Rheological(MR) dampers. The unstable platform of the developed system was controlled by electric currents to the MR dampers. A subject executed the maintaining and moving exercises which are presented through the display monitor. The electromyographies of the eight muscles in lower extremities were recorded and analyzed in the time and the frequency domain: the muscles of interest were rectus femoris(RF), biceps femoris(BF), tensor fasciae latae(TFL), vastus lateralis(VL), vastus medialis(VM), gastrocnemius(Ga), tibialis anterior(TA), Soleus(So). The experimental results showed that the muscular activities differed in the four moving exercises and the nine maintaining exercises. For the anterior-posterior pattern, the TA showed highest activities; for the left-right pattern, the TFL; for the 45, $-45^{\circ}$ pattern, the TFL and TA. Also, the rate of the increase in the muscular activities were affected by the condition of the unstable platform with MR dampers for the maintaining and moving exercises. The experimental results suggest that the choice of different maintaining and moving exercises could selectively train different muscles in various intensity. Futhermore, the findings suggested that the training using this system can improve the ability of postural control.

Response Property of Multi-directional Mount Using Magneto-Rheological Fluid (MR유체를 이용한 다방향 제진형 마운트의 응답특성)

  • 안영공;신동춘;양보석;이일영;김동조
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.7
    • /
    • pp.517-523
    • /
    • 2003
  • This paper presents response property of the squeeze mode type mount using Magneto-Rheological fluid (MR fluid) . The MR mount for the isolation of multi-directional vibrations was constructed in this study. Both the mechanism and shape of the mount are the same as squeeze film dampers for a rotor system. In the present work, the performance of the mount was experimentally Investigated according to the magnetic field strength. The experimental results present that the MR mount can effectively reduce the vibration in a wide range of frequency by controlling the applied electromagnetic filed strength. Viscous damping and stiffness coefficients of the MR mount tend to be changed according to the variation of the applied currents In this study.

Seismic Response Control of Bridge Structure using Fuzzy-based Semi-active Magneto-rheological Dampers

  • Park, Kwan-Soon;Ok, Seung-Yong;Seo, Chung-Won
    • International Journal of Safety
    • /
    • v.10 no.1
    • /
    • pp.22-31
    • /
    • 2011
  • Seismic response control method of the bridge structures with semi-active control device, i.e., magneto-rheological (MR) damper, is studied in this paper. Design of various kinds of clipped optimal controller and fuzzy controller are suggested as a semi-active control algorithm. For determining the control force of MR damper, clipped optimal control method adopts bi-state approach, but the fuzzy control method continuously quantifies input currents through fuzzy inference mechanism to finely modulate the damper force. To investigate the performances of the suggested control techniques, numerical simulations of a multi-span continuous bridge system subjected to various earthquakes are performed, and their performances are compared with each other. From the comparison of results, it is shown that the fuzzy control system can provide well-balanced control force between girder and pier in the view point of structural safety and stability and be quite effective in reducing both girder and pier displacements over the existing control method.

  • PDF

Free vibration analysis of magneto-rheological smart annular three-layered plates subjected to magnetic field in viscoelastic medium

  • Amir, Saeed;Arshid, Ehsan;Maraghi, Zahra Khoddami
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.581-592
    • /
    • 2020
  • Magneto-rheological fluids and magneto-strictive materials are of the well-known smart materials which are used to control and reduce the vibrations of the structures. Vibration analysis of a smart annular three-layered plate is provided in this work. MR fluids are used as the core's material type and the face sheets are made from MS materials and is assumed they are fully bonded to each other. The structure is rested on visco-Pasternak foundation and also is subjected to a transverse magnetic field. The governing motion equations are derived based on CPT and employing Hamilton's principle and are solved via GDQ as a numerical method for various boundary conditions. Effect of different parameters on the results are considered and discussed in detail. One of the salient features of this work is the consideration of MR fluids as the core, MS materials as the faces, and all of them under magnetic field. The outcomes of this study may be led to design and create smart structures such as sensors, actuators and also dampers.

Experimental and analytical studies on stochastic seismic response control of structures with MR dampers

  • Mei, Zhen;Peng, Yongbo;Li, Jie
    • Earthquakes and Structures
    • /
    • v.5 no.4
    • /
    • pp.395-416
    • /
    • 2013
  • The magneto-rheological (MR) damper contributes to the new technology of structural vibration control. Its developments and applications have been paid significant attentions in earthquake engineering in recent years. Due to the shortages, however, inherent in deterministic control schemes where only several observed seismic accelerations are used as the trivial input and in classical stochastic optimal control theory with assumption of white noise process, the derived control policy cannot effectively accommodate the performance of randomly base-excited engineering structures. In this paper, the experimental and analytical studies on stochastic seismic response control of structures with specifically designed MR dampers are carried out. The random ground motion, as the base excitation posing upon the shaking table and the design load used for structural control system, is represented by the physically based stochastic ground motion model. Stochastic response analysis and reliability assessment of the tested structure are performed using the probability density evolution method and the theory of extreme value distribution. It is shown that the seismic response of the controlled structure with MR dampers gain a significant reduction compared with that of the uncontrolled structure, and the structural reliability is obviously strengthened as well.

Seismic Performance Assessment of a Nonlinear Structure Controlled by Magneto-Rheological Damper Using Multi-Platform Analysis (자기유변댐퍼로 제어되는 비선형 구조물의 멀티플랫폼 해석을 이용한 내진성능평가)

  • Kim, Sung Jig
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.143-150
    • /
    • 2013
  • The paper introduces Multi-Platform Analysis (MPA) for the seismic performance of a structure controlled by Magneto-Rheological (MR) dampers and presents analytical assessment of the effect of MR damper when taking into account nonlinear behavior of the structure. This paper introduces the MR Damper Plugin that can facilitate communication between MATLAB/Simulink and a finite element analysis tool in order to account for more complex inelastic behavior of the structure with MR dampers. The MPA method using the developed MR Damper Plugin is validated with experimental results from the real-time hybrid simulation. By utilizing the proposed MPA method, the three-story RC structure controlled by MR dampers is more realistically modeled and its performance under seismic loads is investigated. It is concluded that MR damper designed for a linear structure is not effective in a nonlinear structure and can overestimate the effect of MR damper. This work is expected to overcome difficulties in the analytical assessment of structural control strategies for complex and nonlinear structures by obtaining more reliable results.

Analysis of Magneto-rheological Fluid Based Semi-active Squeeze Film Damper and its Application to Unbalance Response Control of Rotor (자기유변유체를 이용한 반능동형 스퀴즈 필름 댐퍼의 해석 및 회전체 불균형 응답 제어)

  • Kim, Keun-Joo;Lee, Chong-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.354-363
    • /
    • 2005
  • Squeeze film dampers (SFDs) have been commonly used to effectively enhance the dynamic behavior of the rotating shaft supported by rolling element bearings. However, due to the recent trends of high operating speed, high load capacity and light weight in rotating machinery, it is becoming increasingly important to change the dynamic characteristics of rotating machines in operation so that the excessive vibrations, which may occurparticularly when passing through critical speeds or unstable regions, can be avoided. Semi-active type SFDs using magneto-rheological fluid (MR fluid), which responds to an applied magnetic field with a change in rheological behavior, are introduced in order to find its applications to rotating machinery as an effective device attenuating unbalance responses. In this paper, a semi-active SFD using MR fluid is designed, tested, and identified to investigate the capability of changing its dynamic properties such as damping and stiffness.In order to apply the MR-SFD to the vibration attenuation of a rotor, a systematic approach for determining the damper's optimal location is investigated, and also, a control algorithm that could improve the unbalance response characteristics of a flexible rotor is proposed and its control performance is validated with a numerical example.

An innovative hardware emulated simple passive semi-active controller for vibration control of MR dampers

  • Zhang, Jianqiu;Agrawal, Anil K.
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.831-846
    • /
    • 2015
  • Magneto-Rheological (MR) dampers are being used increasingly because of their adaptability to control algorithms and reliability of passive systems. In this paper, an extensive investigation on performance of MR dampers in semi-active and passive modes has been carried out. It is observed that the overall energy dissipation by MR dampers in passive-on modes is higher than that in semi-active modes for most of the competitive semi-active controllers. Based on the energy dissipation pattern, a novel semi-active controller, termed as "Simple Passive Semi-Active Controller", has been proposed for MR dampers. This controller can be emulated by a simple passive hardware proposed in this paper. The proposed concept of controller "hardware emulation" is innovative and can also be implemented for other semi-active devices for control algorithms of certain form. The effectiveness and reliability of the proposed controller has been investigated extensively through numerical simulations. It has been demonstrated that the proposed controller is competitive to or more effective than other widely used / investigated semi-active controllers.