Browse > Article
http://dx.doi.org/10.12989/sss.2020.25.5.581

Free vibration analysis of magneto-rheological smart annular three-layered plates subjected to magnetic field in viscoelastic medium  

Amir, Saeed (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
Arshid, Ehsan (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
Maraghi, Zahra Khoddami (Faculty of Engineering, Mahallat Institute of Higher Education)
Publication Information
Smart Structures and Systems / v.25, no.5, 2020 , pp. 581-592 More about this Journal
Abstract
Magneto-rheological fluids and magneto-strictive materials are of the well-known smart materials which are used to control and reduce the vibrations of the structures. Vibration analysis of a smart annular three-layered plate is provided in this work. MR fluids are used as the core's material type and the face sheets are made from MS materials and is assumed they are fully bonded to each other. The structure is rested on visco-Pasternak foundation and also is subjected to a transverse magnetic field. The governing motion equations are derived based on CPT and employing Hamilton's principle and are solved via GDQ as a numerical method for various boundary conditions. Effect of different parameters on the results are considered and discussed in detail. One of the salient features of this work is the consideration of MR fluids as the core, MS materials as the faces, and all of them under magnetic field. The outcomes of this study may be led to design and create smart structures such as sensors, actuators and also dampers.
Keywords
smart materials; magneto-rheological fluids; magneto-strictive materials; vibration analysis; annular plate; visco-pasternak foundation;
Citations & Related Records
Times Cited By KSCI : 24  (Citation Analysis)
연도 인용수 순위
1 Zhang, R., Ni, Y.-Q., Duan, Y. and Ko, J.-M. (2019), "Development of a full-scale magnetorheological damper model for open-loop cable vibration control", Smart Struct. Syst., Int. J., 23(6), 553-564. https://doi.org/10.12989/sss.2019.23.6.553
2 Zhou, Z.H., Wong, K.W., Xu, X.S. and Leung, A.Y.T. (2011), "Natural vibration of circular and annular thin plates by Hamiltonian approach", J. Sound Vib., 330(5), 1005-1017. https://doi.org/10.1016/J.JSV.2010.09.015   DOI
3 Zucca, M., Raffa, F.A., Fasana, A. and Colella, N. (2015), "A simplified vibration compensation through magnetostrictive actuators", J. Vib. Control, 21(14), 2903-2912. https://doi.org/10.1177/1077546313518956   DOI
4 Aguib, S., Nour, A., Zahloul, H., Bossis, G., Chevalier, Y. and Lancon, P. (2014), "Dynamic behavior analysis of a magnetorheological elastomer sandwich plate", Int. J. Mech. Sci., 87, 118-136. https://doi.org/10.1016/J.IJMECSCI.2014.05.014   DOI
5 Amir, S. (2019), "Orthotropic patterns of visco-Pasternak foundation in nonlocal vibration of orthotropic graphene sheet under thermo-magnetic fields based on new first-order shear deformation theory", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(2), 197-208. https://doi.org/10.1177/1464420716670929   DOI
6 Amir, S., Soleimani-Javid, Z. and Arshid, E. (2019c), "Size-dependent free vibration of sandwich micro beam with porous core subjected to thermal load based on SSDBT", ZAMM - J. Appl. Mathe. Mech. / Zeitschrift Fur Angewandte Mathematik Und Mechanik. https://doi.org/10.1002/zamm.201800334
7 Brush, D.O., Almroth, B.O. and Hutchinson, J.W. (1975), "Buckling of bars, plates, and shells", J. Appl. Mech., 42, 911.
8 Amir, S., Bidgoli, E.M.-R. and Arshid, E. (2018), "Size-dependent vibration analysis of a three-layered porous rectangular nano plate with piezo-electromagnetic face sheets subjected to pre loads based on SSDT", Mech. Adv. Mater. Struct., 1-15. https://doi.org/10.1080/15376494.2018.1487612
9 Amir, S., Arshid, E. and Ghorbanpour Arani, M.R. (2019a), "Size-Dependent Magneto-Electro-Elastic Vibration Analysis of FG Saturated Porous Annular/Circular Micro Sandwich Plates Embedded with Nano-Composite Face sheets Subjected to Multi-Physical Pre Loads", Smart Struct. Syst., Int. J., 23(5), 429-447. https://doi.org/10.12989/sss.2019.23.5.429
10 Amir, S., Arshid, E., Rasti-Alhosseini, S.M.A. and Loghman, A. (2019b), "Quasi-3D tangential shear deformation theory for sizedependent free vibration analysis of three-layered FG porous micro rectangular plate integrated by nano-composite faces in hygrothermal environment", J. Thermal Stress., 1-24. https://doi.org/10.1080/01495739.2019.1660601
11 Anh, V.T.T., Bich, D.H. and Duc, N.D. (2015), "Nonlinear stability analysis of thin FGM annular spherical shells on elastic foundations under external pressure and thermal loads", Eur. J. Mech. - A/Solids, 50, 28-38. https://doi.org/10.1016/J.EUROMECHSOL.2014.10.004   DOI
12 Arshid, E. and Khorshidvand, A.R. (2018), "Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method", Thin- Wall. Struct., 125, 220-233. https://doi.org/10.1016/j.tws.2018.01.007   DOI
13 Bui, T.Q., Nguyen, M.N. and Zhang, C. (2011b), "An efficient meshfree method for vibration analysis of laminated composite plates", Computat. Mech., 48(2), 175-193. https://doi.org/10.1007/s00466-011-0591-8   DOI
14 Bui, T.Q. and Nguyen, M.N. (2011), "A moving Kriging interpolation-based meshfree method for free vibration analysis of Kirchhoff plates", Comput. Struct., 89(3-4), 380-394. https://doi.org/10.1016/j.compstruc.2010.11.006   DOI
15 Bui, T.Q., Nguyen, T.N. and Nguyen-Dang, H. (2009), "A moving Kriging interpolation-based meshless method for numerical simulation of Kirchhoff plate problems", Int. J. Numer. Methods Eng., 77(10), 1371-1395. https://doi.org/10.1002/nme.2462   DOI
16 Bui, T.Q., Nguyen, M.N. and Zhang, C. (2011a), "Buckling analysis of Reissner-Mindlin plates subjected to in-plane edge loads using a shear-locking-free and meshfree method", Eng. Anal. Boundary Elem., 35(9), 1038-1053. https://doi.org/10.1016/J.ENGANABOUND.2011.04.001   DOI
17 Bui, T.Q., Do, T.V., Ton, L.H.T., Doan, D.H., Tanaka, S., Pham, D.T. and Hirose, S. (2016), "On the high temperature mechanical behaviors analysis of heated functionally graded plates using FEM and a new third-order shear deformation plate theory", Compos. Part B: Eng., 92, 218-241. https://doi.org/10.1016/j.compositesb.2016.02.048   DOI
18 Chakraverty, S., Bhat, R.B. and Stiharu, I. (2001), "Free vibration of annular elliptic plates using boundary characteristic orthogonal polynomials as shape functions in the Rayleigh-Ritz method", J. Sound Vib., 241(3), 524-539. https://doi.org/10.1006/jsvi.2000.3243   DOI
19 Chan, D.Q., Quan, T.Q., Kim, S.-E. and Duc, N.D. (2019), "Nonlinear dynamic response and vibration of shear deformable piezoelectric functionally graded truncated conical panel in thermal environments", Eur. J. Mech. - A/Solids, 77, 103795. https://doi.org/10.1016/J.EUROMECHSOL.2019.103795   DOI
20 Arshid, E., Khorshidvand, A.R. and Khorsandijou, S.M. (2019a), "The Effect of Porosity on Free Vibration of SPFG Circular Plates Resting on visco-Pasternak Elastic Foundation Based on CPT, FSDT and TSDT", Struct. Eng. Mech., Int. J., 70(1), 97-112. http://dx.doi.org/10.12989/sem.2019.70.1.097
21 Arshid, E., Kiani, A. and Amir, S. (2019b), "Magneto-electroelastic vibration of moderately thick FG annular plates subjected to multi physical loads in thermal environment using GDQ method by considering neutral surface", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(10), 2140-2159. https://doi.org/10.1177/1464420719832626   DOI
22 Arshid, E., Kiani, A., Amir, S. and Zarghami Dehaghani, M. (2019c), "Asymmetric free vibration analysis of first-order shear deformable functionally graded magneto-electro-thermo-elastic circular plates", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(16), 5659-5675. https://doi.org/10.1177/0954406219850598   DOI
23 Babu, V.R. and Vasudevan, R. (2016), "Dynamic analysis of tapered laminated composite magnetorheological elastomer (MRE) sandwich plates", Smart Mater. Struct., 25(3), 035006. https://doi.org/10.1088/0964-1726/25/3/035006   DOI
24 Bayat, R., Jafari, A.A. and Rahmani, O. (2015), "Analytical Solution for Free Vibration of Laminated Curved Beam with Magnetostrictive Layers", Int. J. Appl. Mech., 7(3), 1550050. https://doi.org/10.1142/S1758825115500507   DOI
25 Duc, N.D. (2018), "Nonlinear thermo-electro-mechanical dynamic response of shear deformable piezoelectric Sigmoid functionally graded sandwich circular cylindrical shells on elastic foundations", J. Sandw. Struct. Mater., 20(3), 351-378. https://doi.org/10.1177/1099636216653266   DOI
26 Chen, L. and Hansen, C.H. (2005), "Active vibration control of a magnetorheological sandwich beam", Proceedings Acoustics, 93-98.
27 Duan, Y., Ni, Y.Q., Zhang, H., Spencer Jr, B.F., Ko, J.M. and Dong, S. (2019), "Design formulas for vibration control of sagged cables using passive MR dampers", Smart Struct. Syst., Int. J., 23(6), 537-551. https://doi.org/10.12989/sss.2019.23.6.537
28 Duc, N.D. (2014), Nonlinear static and dynamic stability of functionally graded plates and shells, Vietnam National University Press.
29 Duc, N.D. and Cong, P.H. (2018), "Nonlinear thermo-mechanical dynamic analysis and vibration of higher order shear deformable piezoelectric functionally graded material sandwich plates resting on elastic foundations", J. Sandw. Struct. Mater., 20(2), 191-218. https://doi.org/10.1177/1099636216648488   DOI
30 Duc, N.D., Quan, T.Q. and Luat, V.D. (2015a), "Nonlinear dynamic analysis and vibration of shear deformable piezoelectric FGM double curved shallow shells under damping-thermoelectro-mechanical loads", Compos. Struct., 125, 29-40. https://doi.org/10.1016/J.COMPSTRUCT.2015.01.041   DOI
31 Duc, N.D., Tuan, N.D., Tran, P., Dao, N.T. and Dat, N.T. (2015b), "Nonlinear dynamic analysis of Sigmoid functionally graded circular cylindrical shells on elastic foundations using the third order shear deformation theory in thermal environments", Int. J. Mech. Sci., 101, 338-348. https://doi.org/10.1016/J.IJMECSCI.2015.08.018   DOI
32 Duc, N.D., Lee, J., Nguyen-Thoi, T. and Thang, P.T. (2017), "Static response and free vibration of functionally graded carbon nanotube-reinforced composite rectangular plates resting on Winkler-Pasternak elastic foundations", Aerosp. Sci. Technol., 68, 391-402. https://doi.org/10.1016/J.AST.2017.05.032   DOI
33 Duc, N.D., Cong, P.H., Anh, V.M., Quang, V.D., Tran, P., Tuan, N.D. and Thinh, N.H. (2015c), "Mechanical and thermal stability of eccentrically stiffened functionally graded conical shell panels resting on elastic foundations and in thermal environment", Compos. Struct., 132, 597-609. https://doi.org/10.1016/J.COMPSTRUCT.2015.05.072   DOI
34 Duc, N.D., Cong, P.H. and Quang, V.D. (2016a), "Nonlinear dynamic and vibration analysis of piezoelectric eccentrically stiffened FGM plates in thermal environment", Int. J. Mech. Sci., 115, 711-722. https://doi.org/10.1016/J.IJMECSCI.2016.07.010   DOI
35 Duc, N.D., Bich, D.H. and Cong, P.H. (2016b), "Nonlinear thermal dynamic response of shear deformable FGM plates on elastic foundations", J. Thermal Stress., 39(3), 278-297. https://doi.org/10.1080/01495739.2015.1125194   DOI
36 Ebrahimi, F. and Dabbagh, A. (2018a), "Thermo-magnetic field effects on the wave propagation behavior of smart magnetostrictive sandwich nanoplates", Eur. Phys. J. Plus, 133(3), 97. https://doi.org/10.1140/epjp/i2018-11910-7   DOI
37 Ebrahimi, F. and Dabbagh, A. (2018b), "Wave propagation analysis of magnetostrictive sandwich composite nanoplates via nonlocal strain gradient theory", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(22), 4180-4192. https://doi.org/10.1177/0954406217748687   DOI
38 Eshaghi, M., Sedaghati, R. and Rakheja, S. (2015), "The effect of magneto-rheological fluid on vibration suppression capability of adaptive sandwich plates: Experimental and finite element analysis", J. Intel. Mater. Syst. Struct., 26(14), 1920-1935. https://doi.org/10.1177/1045389X15586449   DOI
39 Ghorbanpour Arani, A. and Khoddami Maraghi, Z. (2016), "A feedback control system for vibration of magnetostrictive plate subjected to follower force using sinusoidal shear deformation theory", Ain Shams Eng. J., 7(1), 361-369. https://doi.org/10.1016/J.ASEJ.2015.04.010   DOI
40 Ghorbanpour Arani, A. and Abdollahian, M. (2017), "Transient response of FG higher-order nanobeams integrated with magnetostrictive layers using modified couple stress theory", Mech. Adv. Mater. Struct., 26(4), 359-371. https://doi.org/10.1080/15376494.2017.1387326
41 Ghorbanpour Arani, A., BabaAkbar Zarei, H., Eskandari, M. and Pourmousa, P. (2017a), "Vibration behavior of visco-elastically coupled sandwich beams with magnetorheological core and three-phase carbon nanotubes/fiber/polymer composite facesheets subjected to external magnetic field", J. Sandw. Struct. Mater., 21(7), 2194-2218. https://doi.org/10.1177/1099636217743177
42 Ghorbanpour Arani, A., Khoddami Maraghi, Z. and Khani Arani, H. (2017b), "Vibration control of magnetostrictive plate under multi-physical loads via trigonometric higher order shear deformation theory", J. Vib. Control, 23(19), 3057-3070. https://doi.org/10.1177/1077546315588222   DOI
43 Ghorbanpour Arani, A., Pourjamshidian, M., Arefi, M. and Arani, M.R.G. (2019), "Application of nonlocal elasticity theory on the wave propagation of flexoelectric functionally graded (FG) timoshenko nano-beams considering surface effects and residual surface stress", Smart Struct. Syst., Int. J., 23(2), 141-153. https://doi.org/10.12989/sss.2019.23.2.141
44 Guerroudj, H.Z., Yeghnem, R., Kaci, A., Zaoui, F.Z., Benyoucef, S. and Tounsi, A. (2018), "Eigenfrequencies of advanced composite plates using an efficient hybrid quasi-3D shear deformation theory", Smart Struct. Syst., Int. J., 22(1), 121-132. https://doi.org/10.12989/sss.2018.22.1.121
45 MalekzadehFard, K., Gholami, M., Reshadi, F. and Livani, M. (2017), "Free vibration and buckling analyses of cylindrical sandwich panel with magneto rheological fluid layer", J. Sandw. Struct. Mater., 19(4), 397-423. https://doi.org/10.1177/1099636215603034   DOI
46 Huang, H.W., Liu, T.T. and Sun, L.M. (2019), "Multi-mode cable vibration control using MR damper based on nonlinear modeling", Smart Struct. Syst., Int. J., 23(6), 565-577. https://doi.org/10.12989/sss.2019.23.6.565
47 Karami, B. and Shahsavari, D. (2019), "Nonlocal strain gradient model for thermal stability of FG nanoplates integrated with piezoelectric layers", Smart Struct. Syst., Int. J., 23(3), 215-225. https://doi.org/10.12989/sss.2019.23.3.215
48 Lara-Prieto, V., Parkin, R., Jackson, M., Silberschmidt, V. and Kesy, Z. (2010), "Vibration characteristics of MR cantilever sandwich beams: experimental study", Smart Mater. Struct., 19(1), 015005. https://doi.org/10.1088/0964-1726/19/1/015005   DOI
49 Manoharan, R., Vasudevan, R. and Jeevanantham, A.K. (2014), "Dynamic characterization of a laminated composite magnetorheological fluid sandwich plate", Smart Mater. Struct., 23(2), 025022. https://doi.org/10.1088/0964-1726/23/2/025022   DOI
50 Minh, P.P. and Duc, N.D. (2019), "The effect of cracks on the stability of the functionally graded plates with variable-thickness using HSDT and phase-field theory", Compos. Part B: Eng., 175, 107086. https://doi.org/10.1016/J.COMPOSITESB.2019.107086   DOI
51 Minh, P.P., Van Do, T., Duc, D.H. and Duc, N.D. (2018), "The stability of cracked rectangular plate with variable thickness using phase field method", Thin-Wall. Struct., 129, 157-165. https://doi.org/10.1016/J.TWS.2018.03.028   DOI
52 Naji, J., Zabihollah, A. and Behzad, M. (2018), "Vibration characteristics of laminated composite beams with magnetorheological layer using layerwise theory", Mech. Adv. Mater. Struct., 25(3), 202-211. https://doi.org/10.1080/15376494.2016.1255819   DOI
53 Mohammadimehr, M., Arshid, E., Alhosseini, S.M.A.R., Amir, S. and Arani, M.R.G. (2019), "Free vibration analysis of thick cylindrical MEE composite shells reinforced CNTs with temperature-dependent properties resting on viscoelastic foundation", Struct. Eng. Mech., Int. J., 70(6), 683-702. https://doi.org/10.12989/sem.2019.70.6.683
54 Mohammadrezazadeh, S. and Jafari, A. (2019), "Vibration control of laminated truncated conical shell via magnetostrictive layers", Mech. Adv. Mater. Struct., 1-9. https://doi.org/10.1080/15376494.2018.1525627
55 Naji, J., Zabihollah, A. and Behzad, M. (2016), "Layerwise theory in modeling of magnetorheological laminated beams and identification of magnetorheological fluid", Mech. Res. Commun., 77, 50-59. https://doi.org/10.1016/J.MECHRESCOM.2016.09.003   DOI
56 Ramamoorthy, M., Rajamohan, V. and AK, J. (2016), "Vibration analysis of a partially treated laminated composite magnetorheological fluid sandwich plate", J. Vib. Control, 22(3), 869-895. https://doi.org/10.1177/1077546314532302   DOI
57 Shokravi, M. (2018), "Dynamic buckling of smart sandwich beam subjected to electric field based on hyperbolic piezoelasticity theory", Smart Struct. Syst., Int. J., 22(3), 327-334. https://doi.org/10.12989/sss.2018.22.3.327
58 Shu, C. (2012), Differential Quadrature and Its Application in Engineering, Springer Science & Business Media.
59 Sidhoum, I.A., Boutchicha, D., Benyoucef, S. and Tounsi, A. (2018), "A novel quasi-3D hyperbolic shear deformation theory for vibration analysis of simply supported functionally graded plates", Smart Struct. Syst., Int. J., 22(3), 303-314. https://doi.org/10.12989/sss.2018.22.3.303
60 Squire, P. (1999), "Magnetostrictive materials for sensors and actuators", Ferroelectrics, 228(1), 305-319. https://doi.org/10.1080/00150199908226144   DOI
61 Suman, S.D., Hirwani, C.K., Chaturvedi, A. and Panda, S.K. (2017), "Effect of magnetostrictive material layer on the stress and deformation behaviour of laminated structure", IOP Conference Series: Materials Science and Engineering, 178(1), 012026. https://doi.org/10.1088/1757-899X/178/1/012026   DOI
62 Tabbakh, M. and Nasihatgozar, M. (2018), "Buckling analysis of nanocomposite plates coated by magnetostrictive layer", Smart Struct. Syst., Int. J., 22(6), 743-751. https://doi.org/10.12989/sss.2018.22.6.743
63 Thom, D.V., Nguyen, D.K., Duc, N.D., Doan, D.H. and Bui, T.Q. (2017), "Analysis of bi-directional functionally graded plates by FEM and a new third-order shear deformation plate theory", Thin-Wall. Struct., 119, 687-699. https://doi.org/10.1016/J.TWS.2017.07.022   DOI
64 Tohidi, H., Hosseini-Hashemi, S.H. and Maghsoudpour, A. (2018), "Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory", Smart Struct. Syst., Int. J., 22(5), 527-546. https://doi.org/10.12989/sss.2018.22.5.527
65 Tzou, H.S., Lee, H.-J. and Arnold, S.M. (2004), "Smart Materials, Precision Sensors/Actuators, Smart Structures, and Structronic Systems", Mech. Adv. Mater. Struct., 11(4-5), 367-393. https://doi.org/10.1080/15376490490451552   DOI
66 Yeh, J.-Y. (2013), "Vibration analysis of sandwich rectangular plates with magnetorheological elastomer damping treatment", Smart Mater. Struct., 22(3), 035010. https://doi.org/10.1088/0964-1726/22/3/035010   DOI
67 Yeh, J.-Y. (2014), "Vibration characteristics analysis of orthotropic rectangular sandwich plate with magnetorheological elastomer", Procedia Eng., 79, 378-385. https://doi.org/10.1016/J.PROENG.2014.06.358   DOI
68 Yu, T., Yin, S., Bui, T.Q., Liu, C. and Wattanasakulpong, N. (2017), "Buckling isogeometric analysis of functionally graded plates under combined thermal and mechanical loads", Compos. Struct., 162, 54-69. https://doi.org/10.1016/j.compstruct.2016.11.084   DOI
69 Yu, T., Yin, S., Bui, T.Q., Xia, S., Tanaka, S. and Hirose, S. (2016), "NURBS-based isogeometric analysis of buckling and free vibration problems for laminated composites plates with complicated cutouts using a new simple FSDT theory and level set method", Thin-Wall. Struct., 101, 141-156. https://doi.org/10.1016/j.tws.2015.12.008   DOI