• Title/Summary/Keyword: magneto-dielectric

Search Result 29, Processing Time 0.023 seconds

A Small Composite Right/Left-Handed Transmission Line Metamaterial Antenna Using a Magneto-Dielectric Material (Magneto-Dielectric Material을 이용한 소형 Composite Right/Left-Handed Transmission Line Metamaterial 안테나)

  • Jang, Kyung-Duk;Kim, Jae-Hee;Kim, Gi-Ho;Seong, Won-Mo;Park, Wee-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.223-230
    • /
    • 2008
  • A CRLH-TL based compact metamaterial antenna on a magneto-dielectric material is proposed. The proposed antenna is composed of two patches and vias, which is loaded by a magneto-dielectric material constructed by SRRs. The characteristic of SRRs is studied, and the size reduction of the antenna by using the magneto-dielectric material is confirmed. The simulated resonant frequency of the antenna has showed a decrease of 7.13 % at - 1st-order resonant mode, and 23.9 % at zeroth-order resonant mode. A zeroth-order resonant antenna is fabricated and measured, which has a resonant frequency of 1.888 GHz, a bandwidth of 0.48 %, a gain of 0.534 dBi, and an efficiency of 51.7 %.

A Design of a Meander Antenna using Magneto-dielectric Material for 433.92 MHz band (433-92 MHz대 Magneto-dielectric 매질을 이용한 미앤더 안테나의 설계)

  • Tran, Viet Hong;Park, Chul-Keun;Min, Kyeong-Sik
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.323-328
    • /
    • 2005
  • The paper describes a meander antenna using magneto-dielectric composite for 433.92 MHz band. The antenna with magneto-dielectric material in this paper is suggested for miniaturization of antenna size. The return loss of meander antenna is achieved by optimizing the permittivity, $\varepsilon_r$=1.71-j0.004 and permeability, $\mu_r$=2.39+j2.58. Over all dimension of the antenna is $51\times11\times1.6mm$. The return loss and gain are -41 dB, -5dBi, respectively at 433.92 MHz.

  • PDF

Magneto-Optical Kerr Effect Enhancement Methods for Nanostructures

  • Kim, D.H.;You, Chun-Yeol
    • Journal of Magnetics
    • /
    • v.14 no.1
    • /
    • pp.31-35
    • /
    • 2009
  • Herein, the Magneto-Optical Kerr Effect (MOKE) signal enhancement in nanostructures in investigated. It is well known that the MOKE signals of ferromagnetic thin films are enhanced with an additional dielectric layer due to multiple reflections. The MOKE signal is modulated with the additional dielectric layer thickness and is at a maximum when reflectivity is at a minimum. This is not always true in the nanostructures due to the contribution from the non-magnetic substrate portion, especially when substrate reflectivity is minimized and the dependence of the additional dielectric layer thickness for the nanostructure is changed in the case of the continuous thin film. We showed that the MOKE signal for nanostructures could be enhanced with a properly designed, dielectric layer in addition to the anti-reflection coated substrates.

A study on characteristics of magneto-dielectrics as the antenna substrate (안테나 기판으로 자성유전체 특성에 관한 연구)

  • Lee, Young-Soon;Yoo, Jin-Ha;Lee, Ga-Young;Cho, Yun-Ki;Kim, Ui-Jung;Oh, Byoung-Hee
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.6
    • /
    • pp.838-845
    • /
    • 2009
  • In order to obtain magneto-dielectrics with various permmittivity and permeability which could be used as the antenna substrate, various magneto-dielectrics compounded of dielectric materials(such as silicon and epoxy resin) and magnetic materials(such as carbonyl iron, barium and strontium powder) were fabricated. The relative permittivity and permeability of those were measured by use of HP 4291B impedance analyzer. Based upon the measured results, inverted-F meander monopole antennas(IFA) which were printed on the magneto-dielectric substrates fabricated as film type were designed and fabricated to investigate into variations of antenna characteristics such as the resonant frequency and impedance bandwidth in comparison with use of dielectric substrate. Some simulated and measured results for the designed IFA were presented. Characteristics of magneto-dielectrics which are different according as the choice of magnetic material or the composition ratio between magnetic material and dielectric material is different have been discussed.

  • PDF

Application of Magneto-Dielectric Materials in Antenna Design

  • Min Kyeong-Sik;Tran Viet-Hong
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.3
    • /
    • pp.165-170
    • /
    • 2006
  • In this paper, magneto-dielectric material is proposed to use for minimizing antenna size. One examle of very small antenna is presented to prove this with antenna's area of $0.078\lambda_0\times0.016\lambda_0$, and just moderate values of permittivity and permeability while the return loss can reach - 38 dB at the resonant frequency. The parameters of dielectric material for that best performance are $\varepsilon_r=1.71-j0.004$, and $\mu_r=2.39-j2.58$. Besides, this material also has ability to control the trade-off between the gain and bandwidth while keeping the antenna size unchanged.

An Aircraft CLAS Antenna Design using Composite Magneto-dielectric Material (복합자성유전체를 이용한 항공기 CLAS 안테나 개발)

  • Kim, Yo-Sik;Bae, Ki-Hyoung;Yu, Byung-Gil;Kim, Min-Sung;Park, Chan-Yik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.10
    • /
    • pp.820-826
    • /
    • 2013
  • In this paper, a compact and wideband CLAS(Conformal Load bearing Antenna Structure) was studied using smart skin technique. In order to satisfy the electrical performance of the CLAS antenna, the proposed CLAS antenna is composed of conductive mesh, face-sheet, radiator, honeycomb, housing. Especially, radiator is composed of composite magneto-dielectric material and radiating element etched on the PCB (Printed Circuit Board). The radiating element is inserted into the composite magneto-dielectric material and has sloted Folded LP(Log Periodic) structure. By fabricated composite magneto-dielectric, the resonance frequency is decreased and the impedance matching characteristics is improved. We verified that the antenna has wideband characteristics and compact size using the antenna test results.

A Study on Design and Fabrication of Quad-Band Small Antenna with MD(magneto-dielectric) material for mobile Applications (MD 매질을 이용한 이동통신용 Quad-Band 소형 안테나 설계 및 구현에 관한 연구)

  • Kim, Woo-Su;Yoon, Cheol;Oh, Soon-Soo;Kang, Suk-Youb;Park, Hyo-Dal
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1270-1276
    • /
    • 2010
  • In this paper, Quad-Band small antenna for GSM850, GSM900, DCS1800, DCS1900 is designed and fabricated. The antenna achieved the size reduction of over 67.9 % than the conventional PIFA(Planar Inverted-F Antenna) by using a MD(Magneto-Dielectric) material. A simple feeding microstrip line is used to feed the antenna from a $50{\Omega}$ coaxial line, which is capacitively coupled to the grounded patch structure for broadband characteristics. The impedance bandwidth the proposed antenna shows good results as broadband characteristics of 1341 MHz (801 ~ 2142 MHz) in VSWR < 3 (${\leq}\;-6\;dB$) and the gain is -6.67 ~ 4.25 dBi in the operating frequency.

A Magneto-optical Trap Below a Dielectric Coated Mirror Surface

  • Yu, Hoon;Lee, Lim;Lee, Kyung-Hyun;Kim, Jung-Bog
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.223-226
    • /
    • 2009
  • A Magneto-Optical Trap (MOT) for $^{87}Rb$ atoms near the surface of a dielectric coated mirror at the top of a small $20{\times}25{\times}40\;mm^3$ cell has been observed. Two beams of $3.3\;mW/cm^2$ were used for optical cooling and an anti-Helmholtz magnetic field with a spatial gradient of 9.1 G/cm was used for magnetic trapping. The thickness of the mirror coated on a cover glass was less than $100{\mu}m$. The mirror covered the top of a cell and the atom-chip was located outside the vacuum in order to exploit the long life time of the mirror and easy operation of the chip. The trapping position was found 5 mm beneath the mirror surface. The number of trapped atoms was roughly $3{\times}10^7$ atoms and the temperature was approximately a few tens mK. In this paper, we describe the construction of the mirror-MOT in detail.

Dynamic characteristics of TbFeCo Magneto-Optical recording media at 680nm wavelength region (680nm 파장에서 TbFeCo 광자기 기록매체의 동특성)

  • Yoon, Doo-Won;Yeon, Cheong;Kim, Myong-Ryeong
    • Electrical & Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.558-563
    • /
    • 1995
  • Dynamic characteristics of TbFeCo magneto-optical recording media at 680nm wavelength region were studied by means of computer simulation of disc structure and optimization of process variables during sputter deposition. With the slightly reduced Kerr rotation angle due to the reduced wavelength of optical laser source, the improved recording density in TbFeCo magneto optical media showing the CNR greater than 50dB could be achieved by only adjusting the thickness of dielectric and the recording layers when the wavelength of light source is changed from 780nm to 680nm. In addition, the recording power margin of 5mW and the 2mW minimum recording power was realized, It was shown from the present study that the increase in laser power density demonstrated feasibility of low cost and low power laser diode with the reduced optimum recording power.

  • PDF