• Title/Summary/Keyword: magnetics fields

Search Result 195, Processing Time 0.028 seconds

Numerical Formula of Depinning Fields from Notches in Ferromagnetic Permalloy Nanowire

  • Kim, Kab-Jin;You, Chun-Yeol;Choe, Sug-Bong
    • Journal of Magnetics
    • /
    • v.13 no.4
    • /
    • pp.136-139
    • /
    • 2008
  • A simplified equation of depinning fields from notches of ferromagnetic Permalloy nanowires is presented. The derived equation is given in the form of an explicit function of nanowire width and thickness, and notch depth and angle. The equation agrees with all micromagnetic simulation results to an accuracy of ${\pm}$ 0.5 mT.

Metallic Crack Detections by Planar Inductive Coil Sensor Under AC and DC Magnetic Fields

  • Lee, Joon-Sik;Nam, Baek-Il;Kim, Ki-Hyeon
    • Journal of Magnetics
    • /
    • v.17 no.3
    • /
    • pp.210-213
    • /
    • 2012
  • To detect the surface and the opposite side cracks on iron specimen under AC and DC magnetic fields, the planar inductive coil sensors were employed. When the induced signals were measured, the planar inductive coil sensor and the magnetic field source were lifted off about 2 mm from the top surface of the specimen. AC magnetic fields and DC magnetic fields were applied to the specimens by single straight Cu coil and NdFeB permanent magnet, respectively. The detected signals at crack positions were good coincidence with those of the simulation results.

Occupational Exposure to Steady Magnetic Fields and its Effect on Workers Blood Indices at an Electrolysis Unit

  • Ravandi, Mohammad Reza Ghotbi;Mardi, Hossein;Khanjani, Narges;Barkhordari, Abolfazl
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.255-260
    • /
    • 2016
  • The health effects of environmental and occupational exposure to steady magnetic fields is a matter of concern. The aim of this study was to evaluate the hematologic effects of exposure to steady magnetic fields at the electrolysis unit of a Copper complex. The population under study was the workers of the electrolysis unit of the copper refinery. The average steady magnetic field in the exposure group was 2.5 mT. The blood indices of workers exposure to steady magnetic fields after adjusting for confounders showed decreased white blood cells (except neutrophils) and increase in the number and volume of platelets. Red blood cells did not show any significant difference. Exposure to steady magnetic fields even in proposed safe limits may have hematologic effects on humans. There is a necessity for more research about the safe doses of exposure to magnetic fields.

Giant Magnetoresistance Phenomenon under the Double Magnetic Fields (이중자장하에서 거대자기저항 현상)

  • 송용진;주승기
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.4
    • /
    • pp.340-346
    • /
    • 1994
  • Change in the electrical resistance of artificial superlattice under two magnetic fields-the main and the secondary magnetic field-has been studied with respect to each magnetic field strength in (200) textured Co/Cu artificial superlattice. When the two magnetic fields were applied in the same direction, lateral shift of the magnetoresistance curve occurred, while splitting phenomenon of the maximum resistance appeared when the two magnetic fields were applied at the right angle. When the angle between the two magnetic fields became $45^{\circ}$ shifting as well as splitting occurred in the magnetoresistance curve. This magnetoresistance behavior with double magnetic fields in the artificial superlattices could be explained with the macroscopic spin alignment model newly suggested in this work.

  • PDF

Magnetic Field Analysis of the Electrode Arc Furnace in Steel Making Foundries

  • Kim, C.W.;Im, J.I.
    • Journal of Magnetics
    • /
    • v.8 no.2
    • /
    • pp.79-84
    • /
    • 2003
  • Finite element analysis showed that strong magnetic fields were distributed around the arc furnace where the strongest magnetic fields were generated around the three phase cables. The second and third strongest fields near the arc furnace were found to be generated around the electrodes and the mast-arms, respectively. The generated field intensities were greatly influenced by the mast arm structure of the arc furnace as well as the phase differences and operation currents of the supplied power, Magnetic field decay patterns around the arc furnace could be smoothly fitted by this equation of exponential formula, H=H$0_$+Ae$^{\frac{r}{t}}$. These results revealed that magnetic field intensities around the arc furnace could be estimated at any 3-dimensional position using finite element method (FEM).

Demagnetization Performance According to Vertical and Horizontal Magnetic Bias Fields

  • Kim, Young-Hak;Kim, Ki-Chan;Shin, Kwang-Ho;Yoon, Kwan-Seob;Yang, Chang-Seob
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.453-456
    • /
    • 2011
  • Demagnetization for a tube sample which was made of a galvanized steel sheet was performed by applying a magnetic field with a decrement to remove the remanent magnetization of the material. An orthogonal fluxgate magnetic field sensor was used to measure a magnetic field created from a ferromagnetic material. To evaluate the remanent magnetization, the measured magnetic fields were separated into two magnetic field components by the remnant magnetization and the induced one. The horizontal and the vertical bias fields should be controlled separately during demagnetization to remove the horizontal and the vertical components of the remanent magnetization of the tube sample.

New Experimental Investigation of Magnetic and Electric Fields in the Vicinity of High-Voltage Power Lines

  • Ghnimi, Said;Rajhi, Adnen;Gharsallah, Ali
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.102-109
    • /
    • 2016
  • In this paper, the theoretical and experimental characteristics of magnetic and electric fields in the vicinity of high voltage lines are investigated. To realize these measurements and calculations, we have developed some equations for two overhead power line configurations of 150 kV (single circuit, double circuit), based on Biot-savart law, image and Maxwell theories, in order to calculate the magnetic and electric fields. The measurements were done to a maximum distance from the tower of 50 m, at a height of 1m from the ground. These experiments take into consideration the real situations of the power lines and associated equipment. The experimental results obtained are near to that of the Biot-Savart theoretical results for a far distance from the tower; and for a distance close to the power line, the results from the image theory are in good agreement with the experimental results.

A Magnetic Field Separation Technique for a Scaled Model Ship through an Earth's Magnetic Field Simulator

  • Chung, Hyun-Ju;Yang, Chang-Seob;Jung, Woo-Jin
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.62-68
    • /
    • 2015
  • This paper presents an experimental technique to accurately separate a permanent magnetic field and an induced one from the total magnetic fields generated by a steel ship, through compensating for the Earth's magnetic field. To achieve this, an Earth's magnetic field simulator was constructed at a non-magnetic laboratory, and the field separation technique was developed, which consisted of five stages. The proposed method was tested with a scaled model ship, and its permanent and induced magnetic fields were successfully extracted from the magnetic field created by the ship. Finally, based on the separated permanent magnetic field data, the permanent magnetization distribution on the hull was predicted by solving an inverse problem. Accordingly, the permanent magnetic fields generated by the ship can easily be calculated at any depth of water.