• 제목/요약/키워드: magnetically enhanced reactive ion etching

검색결과 12건 처리시간 0.039초

Satistical Analysis of SiO2 Contact Hole Etching in a Magnetically Enhanced Reactive Ion Etching Reactor

  • Liu, Chunli;Shrauner, B.
    • Journal of Magnetics
    • /
    • 제15권3호
    • /
    • pp.132-137
    • /
    • 2010
  • Plasma etching of $SiO_2$ contact holes was statistically analyzed by a fractional factorial experimental design. The analysis revealed the dependence of the etch rate and DC self-bias voltage on the input factors of the magnetically enhanced reactive ion etching reactor, including gas pressure, magnetic field, and the gas flow rates of $CHF_3$, $CF_4$, and Ar. Empirical models of the DC self-bias voltage and etch rate were obtained. The DC self-bias voltage was found to be determined mainly by the operating pressure and the magnetic field, and the etch rate was related mainly to the pressure and the flow rates of Ar and $CHF_3$.

자장 강화 반응성 이온 식각 장비를 이용한 몰리브덴 박막의 식각 특성 연구 (A Study on Etching Characteristics of Molybdenum Thin Films by Magnetically Enhanced Reactive lon Etching System)

  • 김남훈;권광호;김창일;장의구
    • 한국전기전자재료학회논문지
    • /
    • 제13권1호
    • /
    • pp.6-12
    • /
    • 2000
  • In this study, molybdenum thin films were etched with Cl\ulcorner/(Cl\ulcorner+SF\ulcorner) gas mixing ratio in an magneti-cally enhanced reactive ion etching(MERIE) by the etching parameters such as rf power of 250 watts, chamber pressure of 100 mTorr and B-field of 30 gauss. The etch rate was 150nm/min under Cl\ulcorner/(Cl\ulcorner+SF\ulcorner) gas mixing ratio of 0.25. At this time, the selectivity of Mo to SiO\ulcorner, photoresist were respectively 0.94, 0.05. The surface reaction of the etched Mo thin films was investigated with X-ray photoelectron spectroscopy(XPS). It was analyzed that Mo peaks was mainly observed in Mo-O bonds formed MoO\ulcorner compounds and F was detected in Mo-F and O-F bonds. Cl peaks were detected by the peak of Cl 2p\ulcorner in Cl-Mo bonds of MoCl\ulcorner or MoO\ulcornerCl\ulcorner formulas. Almost all of both Cl and S atoms had been com-bined with Mo, respectively.

  • PDF

MERIE형 금속 식각기에 의한 몰리브덴 식각 연구 (A Study on Etching of Molybdenum by MERIE Metal Etcher)

  • 김남훈;김창일;권광호;김태형;장의구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.34-38
    • /
    • 1999
  • In this study, molybdenum thin films were etched with the various Cl$_2$/(Cl$_2$+SF$_{6}$) gas mixing ratio in an magnetically enhanced reactive ion etching(MERIE) by the etching parameter such as rf power of 185 watts, chamber pressure of 40 mTorr and B-field of 80 gauss. The etch rate was 150 nm/min under Cl$_2$/(Cl$_2$+SF$_{6}$) gas mixing ratio of 0.25. At this time, the selectivity of Mo to SiO$_2$, photoresist were respectively 0.94, 0.50. The surface reaction of the etched Mo thin films was investigated with X - ray photoelectron spectroscopy (XPS).PS).

  • PDF

Characterization of via etch by enhanced reactive ion etching

  • Bae, Y.G.;Park, C.S.
    • 한국결정성장학회지
    • /
    • 제14권6호
    • /
    • pp.236-243
    • /
    • 2004
  • The oxide etching process was characterized in a magnetically enhanced reactive ion etching (MERIE) reactor with a $CHF_3CF_4$ gas chemistry. A statistical experimental design plus one center point was used to characterize relationships between process factors and etch response. The etch response modeled are etch rate, etch selectivity to TiN and uniformity. Etching uniformity was improved with increasing $CF_4$ flow ratio, increasing source power, and increasing pressure depending on source power. Characterization of via etching in $CHF_3CF_4$ MERIE using neural networks was successfully executed giving to highly valuable information about etching mechanism and optimum etching condition. It was found that etching uniformity was closely related to surface polymerization, DC bias, TiN and uniformity.

$CF_4$$O_2$를 이용한 저유전율 물질인 Methylsilsequioxane의 RIE와 MERIE 공정 (Reactive Ion Etching and Magnetically Enhanced Reactive Ion Etching Process of Low-K Methylsilsequioxane Insulator Film using $CF_4$ and $O_2$)

  • 정도현;이용수;이길헌;김광훈;이희우;최종선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.1491-1493
    • /
    • 2000
  • Continuing improvement of microprocessor performance involves in the device size. This allow greater device speed, an increase in device packing density, and an increase in the number of functions that can reside on a single chip. However this has led to propagation delay, crosstalk noise, and power dissipation due to resistance-capacitance(RC) coupling become significant due to increased wiring capacitance, especially interline capacitance between the metal lines on the same metal level. So, MSSQ which has the permittivity between 2.5-3.2 is used to prevent from these problems. For pattering MSSQ(Methylsilsequioxane), we use RIE(Reactive Ion Etching) and MERIE(Magnetically enhanced Reactive Ion Etching) which could provide good anisotropic etching. In this study, we optimized the flow rate of $CF_{4}/O_2$ gas, RF power to obtain the best etching rate and roughness and also analyzed the etching result using $\alpha$-step profilemeter, SEM, infrared spectrum and AFM.

  • PDF

Characterization of Via Etching in $CHF_3/CF_4$ Magnetically Enhanced Reactive Ion Etching Using Neural Networks

  • Kwon, Sung-Ku;Kwon, Kwang-Ho;Kim, Byung-Whan;Park, Jong-Moon;Yoo, Seong-Wook;Park, Kun-Sik;Bae, Yoon-Kyu;Kim, Bo-Woo
    • ETRI Journal
    • /
    • 제24권3호
    • /
    • pp.211-220
    • /
    • 2002
  • This study characterizes an oxide etching process in a magnetically enhanced reactive ion etching (MERIE) reactor with a $CHF_3/CF_4$ gas chemistry. We use a statistical $2^{4-1}$ experimental design plus one center point to characterize the relationships between the process factors and etch responses. The factors that we varied in the design include RF power, pressure, and gas composition, and the modeled etch responses were the etch rate, etch selectivity to TiN, and uniformity. The developed models produced 3D response plots. Etching of $SiO_2$ mainly depends on F density and ion bombardment. $SiO_2$ etch selectivity to TiN sensitively depends on the F density in the plasma and the effects of ion bombardment. The process conditions for a high etch selectivity are a 0.3 to 0.5 $CF_4$ flow ratio and a -600 V to -650 V DC bias voltage according to the process pressure in our experiment. Etching uniformity was improved with an increase in the $CF_4$ flow ratio in the gas mixture, an increase in the source power, and a higher pressure. Our characterization of via etching in a $CHF_3/CF_4$ MERIE using neural networks was successful, economical, and effective. The results provide highly valuable information about etching mechanisms and optimum etching conditions.

  • PDF

Inductively Coupled Plasma Reactive Ion Etching of MgO Thin Films Using a $CH_4$/Ar Plasma

  • Lee, Hwa-Won;Kim, Eun-Ho;Lee, Tae-Young;Chung, Chee-Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.77-77
    • /
    • 2011
  • These days, a growing demand for memory device is filled up with the flash memory and the dynamic random access memory (DRAM). Although DRAM is a reasonable solution for current demand, the universal novel memory with high density, high speed and nonvolatility, needs to be developed. Among various new memories, the magnetic random access memory (MRAM) device is considered as one of good candidate memories because of excellent features including high density, high speed, low operating power and nonvolatility. The etching of MTJ stack which is composed of magnetic materials and insulator such as MgO is one of the vital process for MRAM. Recently, MgO has attracted great interest in the MTJ stack as tunneling barrier layer for its high tunneling magnetoresistance values. For the successful realization of high density MRAM, the etching process of MgO thin films should be investigated. Until now, there were some works devoted to the investigations on etch characteristics of MgO thin films. Initially, ion milling was applied to the etching of MgO thin films. However, ion milling has many disadvantages such as sidewall redeposition and etching damage. High density plasma etching containing the magnetically enhanced reactive ion etching and high density reactive ion etching have been employed for the improvement of etching process. In this work, inductively coupled plasma reactive ion etching (ICPRIE) system was adopted for the improvement of etching process using MgO thin films and etching gas mixes of $CH_4$/Ar and $CH_4$/$O_2$/Ar have been employed. The etch rates are measured by a surface profilometer and etch profiles are observed using field emission scanning emission microscopy (FESEM). The effects of gas concentration and etch parameters such as coil rf power, dc-bias voltage to substrate, and gas pressure on etch characteristics will be systematically explored.

  • PDF

자장강화된 유도결합 플라즈마를 이용한 (Ba, Sr) $TiO_3$박막의 식각 특성 연구 (The Etching Characteristics of (Ba, Sr) $TiO_3$Thin Films Using Magnetically Enhanced Inductively Coupled Plasma)

  • 민병준;김창일
    • 한국전기전자재료학회논문지
    • /
    • 제13권12호
    • /
    • pp.996-1002
    • /
    • 2000
  • Ferroelectric (Ba, Sr) TiO$_3$(BST) thin films have attracted much attention for use in new capacitor materials of dynamic random access memories (DRAMs). In order to apply BST to the DRAMs, the etching process for BST thin film with high etch rate and vertical profile must be developed. However, the former studies have the problem of low etch rate. In this study, in order to increase the etch rate, BST thin films were etched with a magnetically enhanced inductively coupled plasma(MEICP) that have much higher plasma density than RIE (reactive ion etching) and ICP (inductively coupled plasma). Experiment was done by varying the etching parameters such as CF$_4$/(CF$_4$+Ar) gas mixing ratio, rf power, dc bias voltage and chamber pressure. The maximum etch rate of the BST films was 170nm/min under CF$_4$/CF$_4$+Ar) of 0.1, 600 W/-350 V and 5 mTorr. The selectivities of BST to Pt and PR were 0.6 and 0.7, respectively. Chemical reaction and residue of the etched surface were investigated with X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS).

  • PDF

트렌치 표면에서의 RIE 식각 손상 회복 (RIE induced damage recovery on trench surface)

  • 이주욱;김상기;배윤규;구진근
    • 한국진공학회지
    • /
    • 제13권3호
    • /
    • pp.120-126
    • /
    • 2004
  • 트렌치 소자 제조시 게이트 산화막 성장과 내압 강하의 원인이 되는 식각손상 회복과 코너 영역의 구조를 개선하기 위해 수소 분위기 열처리를 하였다. 열처리시 수소 원자에 의한 환원 반응을 이용하여 표면 에너지가 높은 코너 영역에서는 원자들의 이동에 의한 결정면 재배열, 산화막 측벽에서의 실리콘 원자 적층, 표면 거칠기의 개선 효과 등을 전자현미경 관찰을 통해 확인하였다. 실리콘 원자의 이동을 방해하는 식각 후 잔류 산화막을 수소 가스의 환원성 분위기에서 열처리함으로써 표면 에너지를 낮추는 방향으로 원자의 이동이 일어나 concave 영역, 즉 트렌치 bottom corner에서는 (111), (311) 결정면 재분포 현상이 일어남을 확인할 수 있었다. 또한 convex comer에서의 원자 이동으로 인해 corner 영역에서는 (1111) 면의 step 들이 존재하게 되고 원자 이동에 의해 산화막 측벽에 이르러 이동된 원자의 적층이 일어나며, 이는 열처리시 표면 손상 회복이 원자이동에 의함을 나타낸다. 이러한 적층은 표면 상태가 깨끗할수록 정합성을 띄어 기판과 일치하는 에피 특성을 나타내고 열처리 온도가 높을수록 표면 세정 효과가 커져 식각손상 회복효과가 커지며, 이를 이용하여 이후의 산화막 성장시 균일한 두께를 코너영역에서 얻을 수 있었다