• Title/Summary/Keyword: magnetic tunnel junction(MTJ)

Search Result 61, Processing Time 0.025 seconds

Comparison of Tunneling Characteristics in the MTJs of CoFeB/MgO/CoFeB with Lower and Higher Tunneling Magnetoresistance

  • Choi, G.M.;Shin, K.H.;Seo, S.A.;Lim, W.C.;Lee, T.D.
    • Journal of Magnetics
    • /
    • v.14 no.1
    • /
    • pp.11-14
    • /
    • 2009
  • We investigated the I-V curves and differential tunneling conductance of two, CoFeB/MgO/CoFeB-based, magnetic tunnel junctions (MTJs): one with a low tunneling magnetoresistance (TMR; 22%) and the other with a high TMR (352%). This huge TMR difference was achieved by different MgO sputter conditions rather than by different annealing or deposition temperature. In addition to the TMR difference, the junction resistances were much higher in the low-TMR MTJ than in the high-TMR MTJ. The low-TMR MTJ showed a clear parabolic behavior in the dI/dV-V curve. This high resistance and parabolic behavior were well explained by the Simmons' simple barrier model. However, the tunneling properties of the high-TMR MTJ could not be explained by this model. The characteristic tunneling properties of the high-TMR MTJ were a relatively low junction resistance, a linear relation in the I-V curve, and conduction dips in the differential tunneling conductance. We explained these features by applying the coherent tunneling model.

Design of 3-bit Arbitrary Logic Circuit based on Single Layer Magnetic-Tunnel-Junction Elements (단층 입력 구조의 Magnetic-Tunnel-Junction 소자를 이용한 임의의 3비트 논리회로 구현을 위한 자기논리 회로 설계)

  • Lee, Hyun-Joo;Kim, So-Jeong;Lee, Seung-Yeon;Lee, Seung-Jun;Shin, Hyung-Soon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.12
    • /
    • pp.1-7
    • /
    • 2008
  • Magnetic Tunneling Junction (MTJ) has been used as a nonvolatile universal storage element mainly in memory technology. However, according to several recent studies, magneto-logic using MTJ elements show much potential in substitution for the transistor-based logic device. Magneto-logic based on MTJ can maintain the data during the power-off mode, since an MTJ element can store the result data in itself. Moreover, just by changing input signals, the full logic functions can be realized. Because of its programmability, it can embody the reconfigurable magneto-logic circuit in the rigid physical architecture. In this paper, we propose a novel 3-bit arbitrary magneto-logic circuit beyond the simple combinational logic or the short sequential one. We design the 3-bit magneto-logic which has the most complexity using MTJ elements and verify its functionality. The simulation results are presented with the HSPICE macro-model of MTJ that we have developed in our previous work. This novel magneto-logic based on MTJ can realize the most complex logic function. What is more, 3-bit arbitrary logic operations can be implemented by changing gate signals of the current drivel circuit.

Low Temperature Properties of Exchange-biased Magnetic Tunnel Junction

  • Lee, K. I.;J. G. Ha;S. Y. Bae;K. H. Shin
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.325-326
    • /
    • 2000
  • Low temperature diagnosis was performed as a probe for the integrity of MTJ(Magnetic tunnel junction) process which is optimised for the given plasma oxidation condition. TMR ratio increased slowly with decreasing temperature than that expected from spin wave exitation theory〔1〕. Junction resistance (RJ) does not follow T$\^$-$\frac{1}{2}$/ law below 200 K, indicating another conduction path besides spin polarized tunneling is involved at low temperature. Temperature dependence of conductance dip and bias dependence of TMR with temperature are discussed, from which the quality of tunnel barrier and its formation process can be inferred.

  • PDF

Magnetotransport Properties of Co-Fe/Al-O/Co-Fe Tunnel Junctions Oxidized with Microwave Excited Plasma

  • Nishikawa, Kazuhiro;Orata, Satoshi;Shoyama, Toshihiro;Cho, Wan-Sick;Yoon, Tae-Sick;Tsunoda, Masakiyo;Takahashi, Migaku
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.63-71
    • /
    • 2002
  • Three fabrication techniques for forming thin barrier layer with uniform thickness and large barrier height in magnetic tunnel junction (MTJ) are discussed. First, the effect of immiscible element addition to Cu layer, a high conducting layer generally placed under the MTJ, is investigated in order to reduce the surface roughness of the bottom ferromagnetic layer, on which the barrier is formed. The Ag addition to the Cu layer successfully realizes the smooth surface of the ferromagnetic layer because of the suppression of the grain growth of Cu. Second, a new plasma source, characterized as low electron energy of 1 eV and high density of $10^{12}$ $cm^{-3}$, is introduced to the Al oxidation process in MTJ fabrication in order to reduce damages to the barrier layer by the ion-bombardment. The magnetotransport properties of the MTJs are investigated as a function of the annealing temperature. As a peculiar feature, the monotonous decrease of resistance area product (RA) is observed with increasing the annealing temperature. The decrease of the RA is due to the decrease of the effective barrier width. Third, the influence of the mixed inert gas species for plasma oxidization process of metallic Al layer on the tunnel magnetoresistance (TMR) was investigated. By the use of Kr-O$_2$ plasma for Al oxidation process, a 58.8 % of MR ratio was obtained at room temperature after annealing the junction at $300{^{\circ}C}$, while the achieved TMR ratio of the MTJ fabricated with usual Ar-$0_2$ plasma remained 48.4%. A faster oxidization rate of the Al layer by using Kr-O$_2$ plasma is a possible cause to prevent the over oxidization of Al layer and to realize a large magnetoresistance.

3-bit Up/Down Counter based on Magnetic-Tunnel-Junction Elements (Magnetic-Tunnel-Junction 소자를 이용한 3비트 업/다운 카운터)

  • Lee, Seung-Yeon;Kim, Ji-Hyun;Lee, Gam-Young;Yang, Hee-Jung;Lee, Seung-Jun;Shin, Hyung-Soon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • An MTJ element not only computes Boolean function but also stores the output result in itself. We can make the most use of magneto-logic's merits by employing the magneto-logic in substitution for the sequential logic as well as the combinational logic. This unique feature opens a new horizon for potential application of MTJ as a universal logic element. Magneto-logic circuits using MTJ elements are more integrative and non-volatile. This paper presents novel 3-bit magneto-logic up/down counters and presents simulation results based on the HSPICE macro-model of MTJ that we have developed.

Simulation Analysis of Spatially Arterial Pulse Wave using Two-dimensional Array Sensors with Magnetoresistive Device (2차원 배열 자기저항소자를 이용한 공간 맥진파형의 전산모사 분석)

  • Kim, M.S.;Kim, S.W.;Kim, G.W.;Lee, S.J.;Lee, S.G.;Lee, H.S.;Park, D.H.;Hwang, D.G.;Lee, S.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.6
    • /
    • pp.307-310
    • /
    • 2005
  • To get the spatial feature of arterial pulse, we designed spatial pulse diagnostic apparatus (SPDA) using a 2-dimensional magnetoresistive sensor array. The magnetic field distribution fur magnet may was simulated using finite element method. We recognized that the field distribution of parallel magnet mays was more sensitive and uniformed than that of perpendicular one. Also the spatial displacements of magnet array were agreed with the output signal of magnetic tunnel junction (MTJ) sensor array.

Advanced Circuit-Level Model of Magnetic Tunnel Junction-based Spin-Torque Oscillator with Perpendicular Anisotropy Field

  • Kim, Miryeon;Lim, Hyein;Ahn, Sora;Lee, Seungjun;Shin, Hyungsoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.556-561
    • /
    • 2013
  • Interest in spin-torque oscillators (STOs) has been increasing due to their potential use in communication devices. In particular the magnetic tunnel junction-based STO (MTJ-STO) with high perpendicular anisotropy is gaining attention since it can generate high output power. In this paper, a circuit-level model for an in-plane magnetized MTJ-STO with partial perpendicular anisotropy is proposed. The model includes the perpendicular torque and the shift field for more accurate modeling. The bias voltage dependence of perpendicular torque is represented as quadratic. The model is written in Verilog-A, and simulated using HSPICE simulator with a current-mirror circuit and a multi-stage wideband amplifier. The simulation results show the proposed model can accurately replicate the experimental data such that the power increases and the frequency decreases as the value of the perpendicular anisotropy gets close to the value of the demagnetizing field.

Etch characteristics of MTJ materials using in CH4/N2O or CH3OH gas (CH4/N2O 및 CH3OH gas를 이용한 Magnetic Tunnel Junction 물질의 식각특성에 관한 연구)

  • Yang, Gyeong-Chae;Jeon, Min-Hwan;Yeom, Geun-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.14-14
    • /
    • 2014
  • STT-MRAM의 구성물질인 magnetic tunnel junction의 효과적인 식각을 위하여 다양한 가스 조합을 연구하였다. 그 결과 $CH_4/N_2O$ gas 조합보다는 $CH_3OH$ gas 가 보다 향상된 식각 특성을 나타내었고 pulse duty ratio 변화와 기판온도 변화가 식각특성 향상에 영향을 주었음을 알 수 있었다.

  • PDF