• Title/Summary/Keyword: magnetic structure

Search Result 2,545, Processing Time 0.034 seconds

A Study on the RC and PSC structure System of the Transrapid in Germany (독일자기부상열차 Transrapid의 콘크리트 교각선로구조물에 관한 연구)

  • Kang, Bo-Soon;Kim, Soo-Sam
    • Journal of the Korean Society for Railway
    • /
    • v.1 no.1 s.1
    • /
    • pp.20-29
    • /
    • 1998
  • State of the art and current issues related with the RC and PSC structure system for the German magnetic levitation train "Transrapid" were investigated. The German magnetic levitation train adopted a new kind of a structure to enable high-speed transportation, which allows the use of the space over a ground. The loading from Transrapid is light-weight compared with a regular train due to load distribution to a supporting structure. Therefore, Transrapid is considered an economical and efficient transportation system, and is also an environmentally-sustainable structure. In this paper, the structural design and construction technology specific to a magnetic levitation train were discussed, and structural considerations related with an actual operation of the train were pointed out. In addition, the future research area of a magnetic levitation train was proposed.

  • PDF

The Creation of a Strong Magnetic Field by Means of Large Magnetic Blocks from NdFeB Magnets in Opposing Linear Halbach Arrays

  • Zezulka, Vaclav;Straka, Pavel
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.364-373
    • /
    • 2016
  • The article presents the results and findings obtained through the assembly of opposing linear Halbach arrays from two magnet layers using large magnetic blocks from permanent NdFeB magnets, especially concerning the distribution of magnetic induction in an air gap. The use of these large blocks has led to a significant expansion of the area of magnetic field with a substantially higher value of magnetic induction in comparison with similar linear Halbach arrays composed of small magnets. The paper also discusses the determined dependences of magnetic induction on the parameters of the x, y, z coordinate system and indicates the possibilities of achieving an even stronger magnetic field in a larger volume of an air gap for application for instance in equipment for magnetic separation of raw materials, in instrument technologies and in other areas.

Properties of transient horizontal magnetic fields and their implication to the origin of quiet-Sun magnetism

  • Ishikawa, Ryohko
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.84.1-84.1
    • /
    • 2012
  • Recent spectropolarimetric observations with high spatial resolution and high polarization sensitivity have provided us with new insight to better understand the quiet-Sun magnetism. This talk is concerned with the ubiquitous transient horizontal magnetic fields in the quiet-Sun, as revealed by the Solar Optical Telescope (SOT) on board Hinode satellite. Exploiting the SOT data with careful treatment of photon noise, we reveal the enigmatic properties of these horizontal magnetic fields such as lifetime, size, position in terms of granular structure, occurrence rate, three-dimensional structure, total magnetic flux, field strength distribution, relationship with the meso- and super-granulations and so on. Based on these observational consequences, we conjecture that the local dynamo process, which takes place in a relatively shallow layer with the granular size, produces these transient horizontal magnetic fields and that these horizontal magnetic fields contribute to the considerable amount of quiet-Sun magnetic fields. We also estimate the magnetic energy flux carried by these horizontal magnetic fields based on the statistical data, and find that the total magnetic energy is comparable to the total chromospheric and coronal energy loss, implying their important role for the chromospheric heating and dynamism.

  • PDF

STRUCTURE OF A MAGNETIC DECREASE OBSERVED IN A COROTATING INTERACTION REGION

  • LEE, ENSANG;PARKS, GEORGE K.
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.1
    • /
    • pp.19-23
    • /
    • 2016
  • Magnetic decreases are often observed in various regions of interplanetary space. Many studies are devoted to reveal the physical nature and generation mechanism of the magnetic decreases, but still we do not fully understand magnetic decreases. In this study, we investigate the structure of a magnetic decrease observed in a corotating interaction region using multi-spacecraft measurements. We use three spacecraft, ACE, Cluster, and Wind, which were widely separated in the x- and y-directions in the geocentric solar ecliptic (GSE) coordinates. The boundaries of the magnetic decrease are the same at the three locations and can be identified as tangential discontinuities. A notable feature is that the magnetic decrease has very large dimension, ≳ RE, along the boundary, which is much larger than the size, ~ 6 RE, along the normal direction. This suggests that the magnetic decrease has a shape of a long, thin rod or a wide slab.

Effects of structure and morphology of anodized Al thin film on magnetic properties (알루미늄 양극산화 피막의 구조 및 형상이 자기적 특성에 미치는 영향)

  • 권용덕;박용수
    • Journal of the Korean institute of surface engineering
    • /
    • v.26 no.2
    • /
    • pp.45-54
    • /
    • 1993
  • In this study, magnetic properties of anodized Al film deposited with ferro-magnetic metals in the capacity of perpendicular magnetic recording media were measured and evaluated to find out the role of structure and morphology of the oxide films on magnetic characteristics. The object of this work was to present the conditions of magnetic thin film formation with more superior magnetic property. Anodizing was carried out under various conditions, and then the anodized film were electro-deposited with Co, Ni, Fe and their alloys. Coercive force and residual magnetization in perpendicular direction increased as the pore length of anodized film increased. It was attributed to the increase of the amount of depoisted metals and the ratio of length/diameter of pores. Morphology of anodized films in phosperic acid was not similar to that of sulfuric acid, and thin films in the former solution had perpendcular magnetic anisostropy because of large diameter, irregular length and distribution of the pores. It was found that magnetic properties of the thin films, which had doubled layer of two metals, were dominated by the metal electrodeposited on the surface of the anodized oxide films.

  • PDF

Near-IR Polarization of the Northeastern Region of the Large Magellanic Cloud

  • Kim, Jaeyeong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.42.2-42.2
    • /
    • 2017
  • The Large Magellanic Cloud (LMC) is a unique target to study the detail structures of molecular clouds and star-forming regions, due to its proximity and face-on orientation from us. Most part of the astrophysical subjects for the LMC have been investigated, but the magnetic field is still veiling despite its role in the evolution of the interstellar medium (ISM) and in the main force to influence the star formation process. Measuring polarization of the background stars behind interstellar medium allows us to describe the existence of magnetic fields through the polarization vector map. In this presentation, I introduce the near-infrared polarimetric results for the $39^{\prime}{\times}69^{\prime}$ field of the northeastern region of the LMC and the N159/N160 star-forming complex therein. The polarimetric observations were conducted at IRSF/SIRPOL 1.4 m telescope. These results allow us to examine both the global geometry of the large-scale magnetic field in the northeastern region and the close structure of the magnetic field in the complex. Prominent patterns of polarization vectors mainly follow dust emission features in the mid-infrared bands, which imply that the large-scale magnetic fields are highly involved in the structure of the dust cloud in the LMC. In addition, local magnetic field structures in the N159/N160 star-forming complex are investigated with the comparison between polarization vectors and molecular cloud emissions, suggesting that the magnetic fields are resulted from the sequential formation history of this complex. I propose that ionizing radiation from massive stellar clusters and the expanding bubble of the ionized gas and dust in this complex probably affect the nascent magnetic field structure.

  • PDF

Magnetic Field Structure and Formation Scenario of the N159/N160 Star-Forming Complex in the Large Magellanic Cloud

  • Kim, Jaeyeong;Jeong, Woong-Seob;Pyo, Jeonghyun;Pak, Soojong;Park, Won-Kee;Kwon, Jungmi;Tamura, Motohide
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.38.3-39
    • /
    • 2017
  • The N159 and N160 ionized regions in the Large Magellanic Cloud are an important extragalactic star-forming complex. The physical environments and the star formation stages are different in N159 and N160. We performed near-infrared polarimetry to those star forming regions with IRSF/SIRPOL 1.4-m telescope. Near-infrared polarization enabled us to trace the detailed structure of magnetic fields in star-forming regions. Through the polarimetric data of J, H, and Ks bands, we examined the magnetic field structures in the N159/N160 complex. In this presentation, we show complex distribution of the magnetic fields associated with dust and gas structures. We verify the local magnetic fields in each star-forming region, which appear to be related with local environments, such as interior and boundary of shell structure, star-forming HII regions, and boundaries between HII regions and dense dark clouds. We discuss the formation scenario of the N159/N160 complex suggested from the magnetic field structure.

  • PDF

Dynamic response of concrete beams reinforced by Fe2O3 nanoparticles subjected to magnetic field and earthquake load

  • Mohammadian, Hossein;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Earthquakes and Structures
    • /
    • v.13 no.6
    • /
    • pp.589-598
    • /
    • 2017
  • In this paper, dynamic response of the horizontal concrete beam subjected to seismic ground excitation is investigated. The structure is reinforced by $Fe_2O_3$ nanoparticles which have the magnetic properties. The hyperbolic shear deformation beam theory (HSDBT) is used for mathematical modeling of the structure. Based on the Mori-Tanaka model, the effective material properties of concrete beam is calculated considering the agglomeration of $Fe_2O_3$ nanoparticles. Applying energy method and Hamilton's principle, the motion equations are derived. Harmonic differential quadrature method (HDQM) along with Newmark method is utilized for numerical solution of the motion equations. The effects of different parameters such as volume fraction and agglomeration of $Fe_2O_3$ nanoparticles, magnetic field, boundary conditions and geometrical parameters of concrete beam are studied on the dynamic response of the structure. In order to validation of this work, an exact solution is used for comparing the numerical and analytical results. The results indicated that applying magnetic field decreases the of the structure up to 54 percent. In addition, increase too much the magnetic field (Hx>5e8 A/m) does not considerable effect on the reduction of the maximum dynamic displacement.

Influence of crystallization treatment on structure, magnetic properties and magnetocaloric effect of Gd71Ni29 melt-spun ribbons

  • Zhong, X.C.;Yu, H.Y.;Liu, Z.W.;Ramanujan, R.V.
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1289-1293
    • /
    • 2018
  • The influence of crystallization treatment on the structure, magnetic properties and magnetocaloric effect of $Gd_{71}Ni_{29}$ melt-spun ribbons has been investigated in detail. Annealing of the melt-spun samples at 610 K for 30 min, a majority phase with a $Fe_3C$-type orthorhombic structure (space group, Pnma) and a minority phase with a CrB-type orthorhombic structure (space group, Cmcm) were obtained in the amorphous matrix. The amorphous melt-spun ribbons undergo a second-order ferromagnetic to paramagnetic phase transition at 122 K. For the annealed samples, two magnetic phase transitions caused by amorphous matrix and $Gd_3Ni$ phases occur at 82 and 100 K, respectively. The maximum magnetic entropy change $(-{\Delta}S_M)^{max}$ is $9.0J/(kg{\cdot}K)$ (5T) at 122 K for the melt-spun ribbons. The values of $(-{\Delta}S_M)^{max}$ in annealed ribbons are 1.0 and $5.7J/(kg{\cdot}K)$, corresponding to the two adjacent magnetic transitions.

Magnetic Pole Structure of Electro-Magnet for Forming Uniform Magnetic Field (평등자계 형성용 전자석 자극 구조에 관한 연구)

  • 김정태;이승면;조현준;김훈년
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.515-518
    • /
    • 2002
  • In this study, the ellipsoidal cap type magnetic pole structure was proposed for the electro-magnet in B-H curve tracer. From the simulation for the electro-magnet without specimen, the area of effective uniform field(99% range for the central field value) was considerably increased in case of the newly proposed ellipsoidal cap type magnetic pole than that of the conventional simple-inclined cap type magnetic pole. Also, through the simulation for the electro-magnet with permanent magnet specimen(NaFe30), the optimal Positions of the magnetic field measurement sensor(Hall sensor) were found out in each case and the errors were decreased in case of the newly proposed ellipsoidal cap type magnetic pole.

  • PDF